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Abstract

The Stealth Address Protocol (SAP) allows users to receive assets thro-
ugh stealth addresses that are unlinkable to their stealth meta-addresses.
The most widely used SAP, Dual-Key SAP (DKSAP), and the most per-
formant SAP, Elliptic Curve Pairing Dual-Key SAP (ECPDKSAP), are
based on elliptic curve cryptography, which is vulnerable to quantum at-
tacks. These protocols depend on the elliptic curve discrete logarithm
problem, which could be efficiently solved on a sufficiently powerful quan-
tum computer using the Shor algorithm. In this paper three novel post-
quantum SAPs based on lattice-based cryptography are presented: LWE
SAP, Ring-LWE SAP and Module-LWE SAP. These protocols leverage
Learning With Errors (LWE) problem to ensure quantum-resistant pri-
vacy. Among them, Module-LWE SAP, which is based on the Kyber key
encapsulation mechanism, achieves the best performance and outperforms
ECPDKSAP by approximately 66.8% in the scan time of the ephemeral
public key registry.

Keywords: Blockchain, privacy, stealth address, lattice-based cryptography,
learning with errors, Kyber

1 Introduction

The protection of user privacy in blockchain transactions is of paramount importance.
Stealth address protocols (SAP) allow assets to be received via stealth addresses that
are not directly linked to the corresponding stealth meta-addresses. Various cryp-
tographic methods can be used to generate SAP. The DKSAP protocol [5] utilizes
elliptic curve multiplication in combination with a hashing of the resulting shared
secret, while ECPDKSAP [20] uses an alternative method involving elliptic curve
pairing. In addition, SAP can also be derived using Post-Quantum Cryptography
(PQC) approaches such as lattice-based cryptography, Learning With Errors (LWE),
Ring Learning With Errors (Ring-LWE) and Module Learning With Errors (Module-
LWE). Although blockchain technology has not yet integrated PQC, these protocols
are expected to play a crucial role in improving the privacy of blockchain transactions
in the near future.
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Stealth address is a method of obtaining addresses using key management with
privacy. A recipient generates the private key and publishes the public key, which
is called the stealth meta-address. Each transaction (stealth) address for this user
can be obtained from this stealth meta-address. The corresponding stealth address
private key can be easily calculated from the corresponding private key of the stealth
meta-address and a public ephemeral key (only the recipient can calculate the stealth
address private key). It is imperative for the recipient to maintain the privacy of the
stealth meta-address’s private key, as it is essential for the recipient to identify and
access their transactions recorded in the blockchain ledger.

The problem with DKSAP and ECPDKSAPs is that their security relies on the
elliptic curve discrete logarithm problem. This problem could easily be solved on a
sufficiently powerful quantum computer running the Shor algorithm [34] or even faster
alternatives.

The basic algebraic structure used in post-quantum cryptography is the lattice.
The Shortest Vector Problem (SVP) is the most important computational problem in
lattice-based cryptography. It presents us with the task of determining the minimum
Euclidean length of a non-zero vector of the lattice. The LWE problem has a direct
connection to SVP. This connection emerges from the fact that solving the LWE prob-
lem is at least as hard as certain worst-case lattice problems, including SVP. Variants
such as Ring-LWE (RLWE) and Module-LWE (MLWE) extend the LWE problem
to structured lattices, leveraging their algebraic properties to achieve more efficient
cryptographic constructions. In recent years, lattice-based cryptography has been
recognized for its many attractive properties, such as strong provable security guaran-
tees and apparent resistance to quantum attacks, flexibility in realizing powerful tools
such as fully homomorphic encryption, and high asymptotic efficiency. Indeed, several
works have shown that for basic tasks such as encryption and authentication, lattice-
based primitives can have performance competitive with (or even outperform) those
based on classical mechanisms such as RSA or Elliptic Curve Cryptography (ECC).
On the other hand, lattice-based schemes have much larger keys and ciphertexts in
comparison, which can be a disadvantage in resource-constrained environments. In
lattice-based cryptography, for example, the keys are often several kilobytes in size,
whereas ECC keys are usually only 32 bytes long.

In this paper, we introduce three LWE protocols: LWE Stealth Address Protocol,
RLWE Stealth Address Protocol and MLWE Stealth Address Protocol. We compare
the parsing time of these protocols. It is important to mention that our two LWE
Stealth Address Protocols (RLWE and MLWE SAPs) provide more powerful results
in terms of address computation time compared to the results of DKSAP [5] and
ECPDKSAP - Protocol 3 from [20].

The paper consists of seven sections. The first section is the introduction. The sec-
ond section provides an overview of the main literature on stealth addresses. Section 3
introduces us to the post-quantum hard problems. This section is divided into four
subsections. In the first subsection, we introduce the notation that we will use in the
rest of the paper. We also define the concept of the lattice, the ideal lattice, the SVP
and the Short Integer Solution (SIS). In the remaining subsections of this section,
we focus on the LWE problems. We define both the Search-LWE and Decision-LWE
problems as well as their variants: Search-RLWE, Decision-RLWE, Search-MLWE
and Decision-MLWE. In the fourth section, we describe the structure inherent in each
Stealth Address Protocol (SAP). We also describe concepts such as the view tag (sub-
section 4.1) and the viewing key (subsection 4.2), which are standard in the DKSAP
and ECPDKSAPs protocols mentioned earlier and in the protocols presented in this
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paper. Section 5 is devoted to Learnig With Errors Stealth Address Protocols. This
section is the centerpiece of our research. In this section, we have five subsections. In
the first subsection, we introduce the notation that we use in the rest of the paper, as
well as the basic functions. In subsection 2, we introduce Kyber, the post-quantum
safe key encapsulation mechanism (KEM) that we use for sharing secrets in our MLWE
protocol. Subsection 5.3 provides a detailed description of our Module Learning With
Errors Stealth Address Protocol (MLWE SAP). In the following subsections, we de-
scribe our Ring Learnig With Errors Stealth Address Protocol (RLWE SAP) and
Learnig With Errors Stealth Address Protocol (LWE SAP). The reason why we have
chosen this arrangement of sections (and not the other way around) is that the MLWE
SAP is the most efficient protocol compared to these two protocols and we want to
focus on it the most. In Section 6, we have three subsections. In subsection 6.1 we
compare the efficiency of the PQ SAPs (LWE SAP, RLWE SAP and MLWE SAP).
In this part of the paper, we also compare the time required for the recipient to
compute the address for MLWE SAP without the view tag and with the view tag
(considering both a 1-byte view tag and a full hash derived from the shared secret).
In subsection 6.2, we compare MLWE SAP (most efficient LWE SAP) with the most
efficient ECPDKSAP. In the last subsection, we compare different parameter values
for different KEMs. Section 7 is the conclusion.

2 Related work

The history of stealth addresses in cryptocurrencies began around the year 2013 with
conceptual proposals aimed at improving the privacy of transactions. In 2013, Nicolas
van Saberhagen described the CryptoNote protocol [2], which used stealth addresses to
improve the privacy of blockchain transactions. In 2014 Peter Todd [1] proposed inte-
grating stealth addresses into the Bitcoin ecosystem to protect the privacy of receiving
funds. The first prominent implementation of stealth addresses was in Monero [33],
which was launched in April 2014. Monero was designed from the ground up with
privacy as a core feature, employing advanced cryptographic techniques to obscure
transaction details and protect user anonymity. Stealth addresses play a crucial role
in protecting the recipient’s privacy by generating one-time use addresses for every
transaction. To protect the identity of the sender, Monero utilizes ring signatures [3],
a technique in which the sender’s transaction is mixed with multiple decoy transac-
tions. When a user initiates a transaction, their signature is included in a ”ring” of
signatures, making it computationally infeasible for an observer to determine which
participant is the actual sender. Monero also uses Ring Confidential Transactions
(RingCT) to hide the transaction amounts. By using range proofs, RingCT [4] en-
sures that the transaction values are within valid limits without revealing the actual
amounts transferred.

The Dual-Key Stealth Address Protocol (DKSAP) [5, 6], introduced in 2014, is
the first stealth address protocol that, in addition to the spending key, also contains
a viewing key, which is necessary for regulatory bodies to inspect transactions. The
viewing key is a private key that is used to access all stealth addresses of a user,
but without the possibility to spend funds from those addresses. With DKSAP, the
recipient must search the ephemeral public key registry until a matching ephemeral
public key is found. In DKSAP, after extracting the ephemeral public key, the recipient
usually needs to perform two elliptic curve multiplications, two hash operations and
one elliptic curve point addition to calculate stealth address. One technique that allows
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recipients of stealth address transactions to skip certain steps in the parsing process,
and thus speed it up, is to add a view tag to each ephemeral public key. The view tag
implemented in Monero [33], on average, enables all steps in the parsing process to be
performed only in 1

256
cases, that is, only if the view tag matches. In other cases, it is

necessary to calculate only the view tag, which usually requires only 1 hash operation
and 1 elliptic curve multiplication. In this way, in [5], parsing is accelerated by almost
87%.

The Zerocash protocol [24], introduced in 2014, enables private transactions through
a shielded pool where users deposit funds. It introduces ”notes,” cryptographic tokens
representing value, each embedding a hidden amount, an owner key, and a nullifier to
prevent double spending. Using ZK-SNARKs (zero-knowledge succinct non-interactive
arguments of knowledge), Zerocash validates ownership and enforces transaction rules
without exposing sensitive details, ensuring secure and private value transfer. Zero-
cash serves as the foundation of Zcash [27], a cryptocurrency that incorporates its
privacy features directly into its blockchain. Unlike Tornado Cash [28], which acts
as a mixer on existing blockchains by obfuscating links between deposits and with-
drawals, Zerocash achieves systemic anonymity via shielded transactions embedded in
its core protocol. Tornado Cash has been banned, and its founders were arrested due
to allegations of facilitating money laundering and failing to implement mechanisms to
prevent illegal usage. In contrast, Zcash enables ”selective disclosure,” allowing users
to share transaction details when needed for purposes such as regulatory audits or tax
compliance.

The paper [5] explores the evolution of stealth addresses, addressing challenges
such as DoS attacks and de-anonymization while proposing solutions to mitigate these
issues. It introduces BaseSAP as a foundational framework for developing various
stealth address schemes, including pairing-based and lattice-based stealth address
protocols. The SAP protocols that use pairing are discussed in [8, 9, 20]. In [8],
a vulnerability is highlighted that allows the sender and the person with the viewing
key to jointly derive the private key of the stealth address. In contrast, [9] shows that
the private key of the stealth address can be determined by the sender alone without
the need for collaboration. Furthermore, [20] introduces four pairing-based protocols
designed to overcome the limitations identified in [8, 9]: three ECPDKSAPs (Elliptic
Curve Pairing Dual-Key Stealth Address Protocols) and ECPSKSAP (Elliptic Curve
Pairing Single-Key Stealth Address Protocol). Among them, only the final variant,
later named the Curvy protocol, is compatible with Ethereum. Implementation re-
sults [21] for the Curvy protocol demonstrate that its parsing process is approximately
five times faster than the DKSAP implementation described in [5]. The Curvy pro-
tocol is currently the fastest SAP and for this reason we compare it (in the section
Implementation Results) with the most efficient LWE protocol from this paper.

Most of the currently most widely used stealth address protocols are based on the
DKSAP and the Zerocash protocol. Umbra Cash [29] and Fluidkey [30] are based
on DKSAP, while Railgun [31] and Labyrinth [32] are based on the Zerocash proto-
col. The key difference is that DKSAP based protocols allows funds to be sent to a
standard Ethereum address while breaking links to the recipient’s identity, the trans-
action remains traceable, exposing the sender’s identity through the stealth address’s
history. In contrast, the Zerocash based protocols conceals the sender and transaction
value but operates within a single contract, rather than as a standard transaction to
a typical Ethereum address.

Along with the development of the stealth address protocols based on the elliptic
curve cryptography, there was a need for the development of the post-quantum stealth
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address protocols. Namely, National Institute of Standards and Technology (NIST) in
their report [16] emphasizes the urgency of transitioning to PQC due to the potential
”harvest now, decrypt later” threat. It has released three PQC standards - lattice-
based and hash-based methods, as initial steps toward this transition. Code-based,
isogeny-based and multivariate protocols were also proposed, but those proposals were
rejected due to insufficient security and/or efficiency and key size. Migration, expected
to span 10–20 years, involves significant challenges, including the integration of PQC
algorithms into various systems. Also note that National Security Memorandum 10
(NSM-10) targets 2035 for Federal systems to adopt PQC, although timelines may
vary depending on system complexity and risk.

So, quantum computing poses a theoretical risk to current encryption methods,
including blockchain security. Therefore, Ethereum’s future security relies on inte-
grating post-quantum cryptography to mitigate threats posed by quantum computers.
The shift is crucial to protect assets, smart contracts, and user data from vulnerabili-
ties in current public key cryptography. Ethereum’s roadmap, led by Vitalik Buterin,
includes “The Splurge” [7], a phase focused on adding protections against future quan-
tum computing risks to keep the blockchain secure.

To date, limited effort has been devoted to the development of post-quantum
stealth address protocols. For instance, the protocol presented in [25] incorporates
fully homomorphic encryption [26], which is a recognized post-quantum technique.
However, the core protocol is essentially a variant of DKSAP that relies on elliptic
curve cryptography. Therefore, it does not qualify as post-quantum secure, despite the
claims of the authors. Furthermore, [5] highlights that lattice-based stealth addresses
represent an area requiring further research.

Motivated by these papers, we propose the construction of lattice-based stealth
address protocols. These protocols leverage the following key encapsulation mecha-
nisms: Frodo [40] (based on LWE), NewHope [39] (based on Ring-LWE) and Kyber
[17] (based on Module-LWE).

3 Post-Quantum hard problems

In this section, we provide an overview of some of the foundational problems in the
post-quantum cryptography, focusing on the LWE problems and its structured vari-
ants, Ring-LWE and Module-LWE. These problems not only underpin the security of
many cryptographic constructions but also offer efficient implementations due to their
algebraic structures. The foundational importance of lattice problems in cryptography
was first highlighted by Ajtai, who demonstrated the hardness of generating lattice
problems with cryptographic relevance, in his paper [12]. His results laid the ground-
work for developing lattice-based cryptographic schemes, including those based on the
LWE problem.

We begin by introducing lattices and ideal lattices, SVP and SIS, which form
the mathematical basis for these problems, and then proceed to define the LWE,
Ring-LWE, and Module-LWE problems, along with their applications in cryptographic
protocols.

3.1 Notation and basic definitions

In our protocols, we use a ring of integers Z and the polynomial ring R = Z[x]/(xn+1),
where n is a power of 2. For an integer q, we use Zq = Z/qZ to denote the ring of
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integers modulo q, and Rq to denote R/qR = Zq[x]/(x
n + 1). We denote by regular

letters elements in R,Rq,Z,Zq, with lowercase bold letters vectors from Rk
q (where

k > 1) and with uppercase bold letters matrices from Rk×k
q (where k > 1).

Following definitions (see [15]) of a lattice and its basis, provide a formal framework
for understanding lattice-based problems.

Definition 1. Let Rm be the m-dimensional Euclidean space. A lattice in Rm is the
set

L(b1, . . . ,bn) =

{
n∑

i=1

xibi : xi ∈ Z

}
of all integral combinations of n linearly independent vectors b1, . . . ,bn in Rm (where
m ≥ n). The integers n and m are called the rank and dimension of the lattice,
respectively. The sequence of vectors b1, . . . ,bn is called a lattice basis.

A lattice is also characterized as an additive subgroup of Rm that is discrete,
meaning it has no accumulation points other than infinity. This implies that the
lattice consists of isolated points and forms a regular grid-like structure in the vector
space.

To define an ideal lattice, we first introduce the concept of an ideal.

Definition 2. An ideal I of the ring R is an additive subgroup I ⊆ R that is closed
under multiplication by elements of R, meaning v · r ∈ I, ∀v ∈ I and ∀r ∈ R.

An ideal lattice is a lattice derived from an ideal I in a commutative ring R under
a specific embedding, such as the coefficient embedding. This multiplicative property
introduces unique structural characteristics to ideal lattices.

Lattice-based cryptography relies on several hard computational problems. Among
these, some are particularly relevant for their direct application in cryptographic
schemes, and we will now define three of them (the definitions are taken from [13],
where one can also find definitions for the Decisional Approximate SVP (GapSVPγ),
Approximate Shortest Independent Vectors Problem (SIVPγ), and Bounded Distance
Decoding Problem (BDDγ)).

The first is the Shortest Vector Problem (SVP), which is central to understanding
lattice structures and their cryptographic utility.

Definition 3. (SVP) Given an arbitrary basis B of some lattice L = L(B), find a
shortest nonzero lattice vector, i.e, a vector v ∈ L for which

∥v∥ = min
u∈L\{0}

∥u∥.

In cryptography, approximation variants of lattice problems are often more practi-
cal due to their reduced computational complexity. These problems are parameterized
by an approximation factor γ ≥ 1, which is typically a function of the lattice dimension
n. For instance, the approximation version of SVP is known as SVPγ .

Definition 4. (SVPγ) Given a basis B of an n-dimensional lattice L = L(B), find
a nonzero vector v ∈ L for which

∥v∥ ≤ γ(n) · min
u∈L\{0}

∥u∥.

Another crucial problem in lattice cryptography is the Short Integer Solution (SIS)
problem. Informally, the SIS problem asks us to find a ”short” nonzero integer com-
bination of given lattice vectors that sums to zero.
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Definition 5. (SISn,q,β,m) Given m uniformly random vectors ai ∈ Zn
q , forming

the columns of a matrix A ∈ Zn×m
q , find a nonzero integer vector z ∈ Zm of norm

∥z∥ ≤ β such that

Az =
∑
i

ai · zi = 0 ∈ Zn
q .

3.2 LWE problems

LWE problems are introduces by Regev in the paper [10]. This work not only intro-
duced the LWE problem but also demonstrated its profound implications for cryptog-
raphy, linking its hardness to lattice problems.

To formalize LWE problems, we first define (see [13]) the LWE distribution. The
LWE distribution encapsulates the idea of introducing noise into linear equations over
a finite field, making it computationally hard to recover the secret vector.

Definition 6. (LWE distribution) For a vector s ∈ Zn
q called the secret, the LWE

distribution As,χ over Zn
q × Zq is sampled by choosing a ∈ Zn

q uniformly at random,
choosing e from χ, and outputting a and b = (⟨s,a⟩+ e) mod q.

According to Peikert (see [13]), the following two definitions represent the two main
LWE problems: Search-LWE (to find the secret given LWE samples) and Decision-
LWE (to distinguish between LWE samples and uniformly random ones).

Definition 7. (Search-LWEn,q,χ,m) Given m independent samples (ai, bi) ∈ Zn
q ×Zq

from As,χ for a uniformly random s ∈ Zn
q (fixed for all samples), find s.

Definition 8. (Decision-LWEn,q,χ,m) For m independent samples (ai, bi) ∈ Zn
q×Zq,

where every sample is distributed according to either: (1)As,χ for a uniformly random
s ∈ Zn

q (fixed for all samples), or (2) the uniform distribution, distinguish which is the
case (with non-negligible advantage).

Peikert in [13] highlights a duality between the Short Integer Solution (SIS) and
LWE problems, where the SIS and respective LWE lattices are dual to each other up
to a scaling factor of q. This duality provides theoretical insights into the robustness
of LWE, linking it to foundational lattice problems that are resistant to both classical
and quantum attacks. In [10], it is proved that both Search-LWE and Decision-LWE
are computationally hard problems, provided that the Shortest Vector Problem (SVP)
in lattices is hard in the worst-case. Specifically, Regev’s reduction shows that solving
LWE efficiently would imply an efficient algorithm for solving SVP in certain struc-
tured lattices, which is widely believed to be intractable. This foundational result
establishes the strong security guarantees of LWE by connecting its hardness to well-
studied lattice problems, which remain difficult even for quantum computers.

3.3 Ring-LWE problems

A major drawback of schemes based on the LWE problem is their inefficiency in prac-
tical applications, as they require significant computation time and have excessively
large key sizes. In this context, more efficient schemes can be constructed using the
Ring-LWE problem.

The concept of Ring-LWE was first introduced in 2010 in the paper [11] by Lyuba-
shevsky, Peikert and Regev. This work revolutionized lattice-based cryptography by
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leveraging the algebraic structure of polynomial rings, offering a more efficient alter-
native to LWE while maintaining its robust security foundations. To formally describe
the Ring-LWE problem, we first define (see [13]) the underlying distribution and then
outline the search and decision variants of the problem.

Definition 9. (RLWE Distribution) For an s ∈ Rq called secret, the Ring-LWE
distribution As,χ over Rq × Rq is sampled by choosing a ∈ Rq uniformly at random,
choosing e from χ, and outputting a and b = (s · a+ e) mod q.

Just as in the case of LWE, the Ring-LWE problem is categorized into two fun-
damental variants: the search problem, which involves recovering the secret, and the
decision problem, which involves distinguishing samples generated with a secret from
uniformly random samples.

Definition 10. (Search-RLWEq,χ,m) Given m independent samples (ai, bi)∈Rq×Rq

from As,χ for a uniformly random s ∈ Rq (fixed for all samples), find s.

Definition 11. (Decision-RLWEq,χ,m) Form independent samples (ai, bi)∈Rq×Rq,
where every sample is distributed according to either: (1) As,χ for a uniformly random
s ∈ Rq (fixed for all samples), or (2) the uniform distribution, distinguish which is the
case (with non-negligible advantage).

According to the Main Theorem 1 from [11], if it is hard for polynomial-time
quantum algorithms to approximate the search version of the Shortest Vector Prob-
lem (SVP) in the worst case on ideal lattices within a fixed polynomial factor, then
any polynomial number of samples drawn from the Ring-LWE distribution are pseu-
dorandom to any polynomial-time (possibly quantum) adversary.

This result establishes a strong theoretical foundation for the security of Ring-LWE
by linking it to well-studied lattice problems. Building on this foundation, Ring-LWE
retains the strong security guarantees of LWE, as its hardness can also be reduced to
worst-case problems on ideal lattices, while achieving greater efficiency and practicality
in cryptographic applications.

3.4 Module-LWE problems

In the paper [14] is introduced the General Learning With Errors (GLWE) problem,
for the purpose of constructing a fully homomorphic encryption scheme without boot-
strapping, which was the first step towards considering the Module-LWE problem.

Module-LWE is explained in detail in the paper [19]. This work extended the
foundational principles of LWE and Ring-LWE to module structures, providing a ver-
satile framework that enables the development of cryptographic schemes combining
both efficiency and adaptability. As in the case of LWE and Ring-LWE problems, we
define distributions, as well as the associated search and decision problems. These
definitions are based on the work in [19], but they have been adapted to follow the
style of writing the definitions presented in subsections 3.2 and 3.3.

Definition 12. (Module-LWE Distribution) For an s ∈ Rk
q called secret, the

Module-LWE distribution As,χ over Rk
q ×Rq is sampled by choosing a ∈ Rk

q uniformly
at random, choosing e from χ, and outputting a and b = (⟨s,a⟩+ e) mod q.

Definition 13.(Search-MLWEq,χ,m,k)Givenm independent samples (ai, bi)∈Rk
q×Rq

from As,χ for a uniformly random s ∈ Rk
q (fixed for all samples), find s.
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Definition 14.(Decision-MLWEq,χ,m,k)Form independent samples (ai, bi)∈Rk
q×Rq,

where every sample is distributed according to either: (1) As,χ for a uniformly random
s ∈ Rk

q (fixed for all samples), or (2) the uniform distribution, distinguish which is the
case (with non-negligible advantage).

Module-LWE generalizes Ring-LWE by working with module over a polynomial
ring instead of just the rings themselves, allowing for more flexible dimensions and
balancing security and efficiency. It inherits the hardness assumptions of both LWE
and Ring-LWE, under the appropriate parameter settings. Its flexibility and efficiency
have made it a foundation for modern PQ cryptographic schemes, such as Kyber [17]
and Dilithium [18], which are finalists in the NIST PQ standardization process.

4 Stealth Address Protocols

With the stealth address protocol, we aim to ensure that the recipient of a transaction
remains anonymous, while it is possible for anyone to easily send assets to them using
their stealth meta-address. This stealth meta-address does not link the recipient to the
newly created, single-use stealth address. As previously mentioned, a stealth address
protocol can be constructed using various cryptographic methods. However, these
protocols have a common central concept that does not rely on a specific cryptographic
technique. This concept is introduced in the following lines and shown in Figure 1.

Since the original idea related to these protocols involves an Ethereum Name Ser-
vice (ENS) registry, we will briefly discuss what this registry is, while pointing out
that the protocols remain functional even with minor changes or the use of a different
registry. The ENS registry is a domain name system built on the Ethereum blockchain.
ENS enables the conversion of randomly generated letters and numbers in a standard
Ethereum address into more easily recognizable words, such as the name of a person
or a brand.

The complete workflow of a stealth address scheme can be summarized as follows:

1) The recipient generates a key pair or pairs (private and public key) for the
stealth meta-address.

2) The recipient registers the stealth meta-address by adding an ENS record con-
taining the public key(s).

3) The sender retrieves the recipient’s stealth meta-address from the ENS registry.

4) The sender generates an ephemeral key pair (private and public key).

5) Using a cryptographic algorithm, the sender combines their ephemeral private
key with the recipient’s meta-address to compute the recipient’s stealth address.

6) The sender publishes their ephemeral public key to the ephemeral public key
registry.

7) The sender sends assets to the recipient’s address.

8) To discover stealth address belonging to them, the recipient scans all new
ephemeral public keys in the registry since their last scan.

9) The recipient computes their new stealth address.

10) The recipient derives the private key that corresponds to the new stealth address.
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Figure 1: Stealth Address Protocol

Newer stealth address protocols introduce the concept of a view tag, which sim-
plifies the recipient’s search in the ephemeral registry. Additionally, some protocols
require the recipient to generate two key pairs. These differences are discussed in the
following subsections.

4.1 View tag

The Monero blockchain was the first to implement the use of a view tag. Adding a
view tag to the ephemeral public key is a technique designed to improve the efficiency
of searching the ephemeral public key registry. This approach eliminates the need to
compute all the steps for each ephemeral public key and instead focuses only on the
keys that the view tag matches.

In some protocols, the view tag should not be larger than 1 byte, otherwise the
recipient of the transaction could potentially be de-anonymized. However, in the
ECPDKSAP and LWE protocols presented in this paper, the view tag can be larger.
This enables a much more efficient search for the recipient in the registry.

Therefore, in the previously mentioned scheme, the only modification would occur
in step 6, where the sender includes the view tag to the ephemeral public key registry
along with the ephemeral public key.
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4.2 Viewing key

The concept of a viewing key was introduced in 2014 with the development of DKSAP.
This key allows a recipient to share access with a third party, such as a tax inspector,
enabling them to view all stealth transactions associated with the recipient. Impor-
tantly, possessing the viewing key does not grant the ability to spend assets linked to
the stealth addresses. This limitation arises because the viewing key holder can only
derive the public keys of the stealth addresses, while the private keys, necessary for
spending, remain inaccessible.

From a regulatory perspective, the viewing key plays a crucial role in stealth
address protocols. It strikes a balance between the privacy of the recipient and the need
for traceability of transactions when required. This feature is particularly valuable in
applications that involve decentralized identities and verifiable credentials.

For protocols that include a viewing key (such as DKSAP, ECPDKSAPs and LWE
SAPs, discussed in this paper), the first step of the scheme is to generate two pairs
of keys (private and public). One of these pairs includes the private viewing key.
Therefore, the first step in such protocols may require generating one more key pairs,
depending on the specific protocol requirements.

5 LWE Stealth Address Protocols

In this section, we provide a general overview of how our LWE protocols work. The
centerpiece of this section is the MLWE SAP, as it is our most performant LWE SAP
version. But before we get into the protocols, we provide the necessary background
and introduce the notation for the terms we will use in this section.

5.1 Background

We begin this section with the modular reduction and define infinity norms in the
corresponding spaces, which we will use in the rest of the paper.

Definition 15. (Modular reduction) For any positive integer q and r ∈ Z, we define
r′ := r mod q, r′ ∈ Zq, to be a unique element such that 0 ≤ r′ < q.

Definition 16. (Symmetric modular reduction) For an even positive integer q and
r ∈ Z, we define

r′ := r mod +q =

{
r if r ≤ q

2
,

r − q if r > q
2

.

For odd q, we would have a case that q−1
2
≤ r′ < q−1

2
, everything else stays the

same. Note that newly defined r′ belongs to Zq.
For an element r ∈ Zq, we define ∥r∥∞ := |r mod +q|. For r ∈ Rq we define it as

∥r∥∞ := max
i
∥ri∥∞, where ri are coefficients of polynomial r in Rq, i.e. ri ∈ Zq. For

r = (r1, r2, ..., rk) ∈ Rk
q , we define it as ∥r∥∞ := max

j
∥rj∥∞, where rj ∈ Rq.

In the following, we introduce some definitions that are necessary due to the con-
cepts we use in the rest of the paper and their notation.

Definition 17. (Ceiling function) Let x ∈ Q be a rational number. The ceiling
function, denoted by ⌈x⌉, maps x to the smallest integer greater than or equal to x, is
defined as

⌈x⌉ := min{z ∈ Z | z ≥ x}.
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Definition 18. (Rounding to the nearest integer) Let x ∈ Q be a rational number.
The rounding to the nearest integer function, denoted by ⌈x⌋, maps x to the closest
integer to x, with the exception that if x is exactly between two integers, we map it to
the greater integer, is defined as

⌈x⌋ := min {z ∈ Z | z > x− 0.5}.

Definition 19. (Centered binomial distribution) Let η be a positive integer. The
centered binomial distribution Bη is defined as the probability distribution over

x =

η∑
i=1

(ai − bi),

where ai, bi ∼ Ber(0.5), for i ∈ {1, 2, . . . , η}, are independent random variables sampled
from the Bernoulli distribution with parameter p = 0.5.

Note that the output x belongs to the set {−η,−η + 1, . . . , η − 1, η}.
In our protocols, we use polynomials (and vectors of polynomials, as well as ma-

trices of polynomials) from Rq and Bη, where Bη is a centered binomial distribution
with parameter η. In the Kyber [17] key encapsulation mechanism, a centered binomial
distribution Bη is used for η = 2 and η = 3.

When we write that a polynomial is from Bη, this means that each coefficient is
sampled from Bη. A vector of polynomials from Rk can be sampled from Bk

η .
Extendable Output Function (XOF) is a function on bit strings where the output

can be extended to any desired length. If we want XOF to take x as input and then
produce a value y that is distributed uniformly over a set T , we write as y ∼ T :=
XOF(x). This function is deterministic, i.e. it always generates the same y for a given
x. If we write A ∼ Rk×k

q := XOF(x), we mean that the output of XOF is A ∈ Rk×k
q .

Compression and decompression functions are used for optimization to reduce the
parameters. They discard some of the low-order bits of the Kyber public key and its
ciphertexts.

Definition 20. (Compression) Function Compressq(x, d), where x ∈ Zq, d and q are

positive integers, such that d < ⌈log2 q⌉, outputs an integer from the set {0, 1, ..., 2d−1}
in the following way

Compressq(x, d) :=

⌈
2d · x
q

⌋
mod 2d.

Definition 21. (Decompression) Function Decompressq(x, d), where x ∈ Z2d , d
and q are positive integers, such that d < ⌈log2 q⌉, outputs an integer from the set
{0, 1, ..., q − 1} in the following way

Decompressq(x, d) :=
⌈q · x

2d

⌋
mod q.

Compression and decompression have a certain impact on the correctness of de-
cryption, which is the subject of the following theorem.

Theorem 1. Let x ∈ Zq, d and q be positive integers, where d < ⌈log2 q⌉. Let

x′ := Decompressq(Compressq(x, d), d).

Then x′ is close to x, i.e. |(x′ − x) mod +q| ≤
⌈ q

2d+1

⌋
.
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We can extend these functions to Rq and Rk
q by applying them to each coefficient

of the polynomials in Rq and Rk
q . The theory behind compression and decompression

comes mostly from the Kyber paper [22].

5.2 Kyber

Kyber is a secure post-quantum Key Encapsulation Mechanism (KEM) based on the
Module-LWE problem. It is one of the finalists in the NIST competition for post-
quantum cryptography.

There is a Kyber512, a Kyber768 and a Kyber1024 version, each with different
security levels. Kyber512 has a security level roughly equivalent to AES128, Kyber768
is roughly equivalent to AES192 and Kyber1024 is roughly equivalent to AES256. We
use Kyber for secret sharing in our MLWE SAP.

5.2.1 Kyber’s IND-CPA-secure encryption

By IND-CPA (Indistinguishability under Chosen Plaintext Attack) we mean the prop-
erty where an adversary, even if he has access to an encryption oracle, cannot distin-
guish between the ciphertexts of any two arbitrarily chosen plaintext messages [23].
For a formal treatment of Kyber IND-CPA security, we refer the reader to the original
paper [22].

CCA (Chosen Ciphertext Attack) security is a stronger definition of security than
IND-CPA in terms of power of the adversary. In this scenario, the adversary has access
to a decryption oracle as well as an encryption oracle [23].

Let M = {0, 1}256 be the message space, where each m ∈ M can be viewed as a
polynomial with coefficients from the set {0, 1}. We have the parameters n, k, q, dt, du
and dv. For all versions of Kyber, the parameter n is 256, where n−1 is the maximum
degree of the polynomials of Rq, where q = 3329. The parameter k represents the
dimension of the module over a polynomial ring. For Kyber512 it is k = 2, for
Kyber768 k = 3 and for Kyber1024 k = 4. The parameters du, dv and dt are used
for compression and decompression functions. In the case of Kyber512 and Kyber768
dt = du = 10, dv = 4 and in the case of Kyber1024, dt = du = 11, dv = 5.

In this section we define the PKE (Public-Key Encryption) scheme, which is a
building block of the CCA secure key encapsulation mechanism. A PKE scheme is a
triple of algorithms (KeyGen, Enc, Dec).

KeyGen generates a pair that contains a private and a public key (sk, pk).

Algorithm 1 Kyber.CPA.KeyGen(): key generation

1: ρ, σ ← {0, 1}256
2: A ∼ Rk×k

q := XOF(ρ)

3: (s, e) ∼ Bk
η ×Bk

η := XOF(σ)
4: t := Compressq(As+ e, dt)
5: return (pk := (t, ρ), sk := s)

Enc is an encryption algorithm that uses a public key and randomness to securely
encrypt a message. The inputs to the algorithm are the public key pk, the message m
and a value l (if not specified, it is by default a uniformly random value). The output

is the encryption of the message m in the form (u, v) ∈
(
{0, 1}256·du

)k × {0, 1}256·dv .
13



Algorithm 2 Kyber.CPA.Enc(pk = (t, ρ),m ∈M, l ∈ {0, 1}256): encryption
1: if l = null then
2: l← {0, 1}256
3: end if
4: t := Decompressq(t, dt)

5: A ∼ Rk×k
q := XOF(ρ)

6: (r, e1, e2) ∼ Bk
η ×Bk

η ×Bη := XOF(l)

7: u := Compressq(A
T r+ e1, du)

8: v := Compressq(t
T r+ e2 + ⌈q/2⌋ ·m, dv)

9: return c := (u, v)

Dec is a decryption algorithm that receives the private key sk and the ciphertext
c as inputs and outputs a decryption of c.

Algorithm 3 Kyber.CPA.Dec(sk = s, c = (u, v)): decryption

1: u := Decompressq(u, du)
2: v := Decompressq(v, dv)

3: return Compressq(v − sTu, 1)

Compression is used in Algorithm 3 to decrypt to 1 if v − sTu is closer to ⌈q/2⌋
than to 0, and to decrypt to 0 otherwise. The algorithms are taken from [22].

The decryption function of Kyber PKE is correct with a certain probability and
we define this correctness in the next definition.

Definition 22. (PKE Correctness [41]) PKE is (1− δ)-correct if

E[ min
m∈M

Pr[Dec(sk,Enc(pk,m)] = m] ≥ δ,

where the mathematical expectation E is taken over (pk, sk)← KeyGen().

In the next theorem we want to quantify the probability that Kyber PKE decrypts
correctly.

Theorem 2. Let k, dt, du and dv be positive integers. Let s, e, r, e1 ∈ Bk
η , e2 ∈ Bη be

random variables. Also let ct ∈ ψk
dt , cu ∈ ψ

k
du , cv ∈ ψdv be distributed according to the

distribution ψk
d defined as follows:

1. choose uniformly random y ∈ Rk
q ;

2. return (y−Decompressq(Compressq(y, d), d))mod
+q.

Then Kyber.CPA is (1− δ)-correct, where

δ = Pr
[
∥eT r+ e2 + cv − sT e1 + cTt r− sT cu∥∞ ≥ ⌊q/4⌋

]
.

The parameters for all Kyber PKE are chosen so that δ < 2−128. We refer the
reader to the proof in the original paper [22].
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5.2.2 CCA-secure KEM

Let G : {0, 1}∗ →
(
{0, 1}256

)2
and H : {0, 1}∗ → {0, 1}256 be hash functions, where

{0, 1}∗ represents an input of arbitrary length. The CCA-secure KEM is obtained by
applying the Fujisaki-Okamoto transform to the Kyber.CPA. The Kyber.CCA.KeyGen
function is similar to the Kyber.CPA.KeyGen function, but additionally generates and
returns the private random key z ∈ {0, 1}256.

Encaps is an encapsulation algorithm that takes as input a public key pk and
outputs a ciphertext c and a shared secret K (a secret that in our protocol can only be
calculated by the sender and the person holding the viewing key), which is the output
of a hash function.

Algorithm 4 Kyber.CCA.Encaps(pk = (t, ρ)): encryption

1: m← {0, 1}256
2: (K̂, l) := G(H(pk),m)
3: c = (u, v) := Kyber.CPA.Enc((t, ρ),m; l)
4: K := H(K̂,H(c))
5: return (c,K)

Decaps is a decapsulation algorithm that takes as inputs the private key s, the
private random key z, the public key pk and the ciphertext c output by the encap-
sulation and returns a shared secret K if the encryption of m′ (which we obtain by
decrypting the ciphertext c) is the same as the input ciphertext c; otherwise it returns
a pseudo-random key K := H(z, c).

Algorithm 5 Kyber.CCA.Decaps(s, z, pk = (t, ρ), c = (u, v)): decryption

1: m′ := Kyber.CPA.Dec(s, (u, v))
2: (K̂ ′, l′) := G(H(pk),m′)
3: (u′, v′) := Kyber.CPA.Enc((t, ρ),m′; l′)
4: if (u′, v′) = (u, v) then
5: K := H(K̂ ′,H(c))
6: else
7: K := H(z,H(c))
8: end if
9: return K

The algorithms are taken from [22]. In the following lines, we will define a general
correctness of KEM.

Definition 23. (KEM Correctness [41]) KEM is (1− δ) correct, if

Pr [Decaps(sk, c) = K | (pk, sk)← KeyGen(); (K, c)← Encaps(pk)] ≥ δ.

If Kyber.CPA is (1− δ)-correct and G is a random oracle, then Kyber.CCA is also
(1−δ)-correct. In the case of Kyber512 KEM δ < 2−139, for Kyber768 KEM δ < 2−164

and for Kyber1024 KEM δ < 2−174.
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5.3 Module-LWE Stealth Address Protocol

Module-LWE strikes a balance between the flexibility of LWE and the efficiency of
Ring-LWE, making it ideal for practical cryptographic protocols. Its structured design
enables better key size and performance optimization, as demonstrated by NIST-
standardized schemes such as Kyber. By utilizing Module-LWE, our stealth address
protocol achieves robust security, computational efficiency and scalability.

Figure 2 illustrates Module-LWE SAP, which works as follows:

1) The recipient obtains a triple of private and public keys (k, zk,K) by calling
the function Kyber.CCA.KeyGen and obtains a triple of keys (v, zv, V ) in the
same way. Note that the public keys K and V consist of two components, i.e.
K = (tK , ρK) and V = (tV , ρV ).

2) The recipient registers the stealth meta-address by adding an ENS record con-
taining the public keys M = (K,V ).

3) The sender retrieves the recipient’s stealth meta-address from the ENS registry.

4) The sender runs the encapsulation by calling the function Kyber.CCA.Encaps
with the public key V as input and derives the shared secret S and the ephemeral
public key R from it, i.e.

(R,S) = Kyber.CCA.Encaps(V ).

Note that the sender uses a private randomness l generated in the Kyber.CPA.Enc
function through the Kyber.CCA.Encaps function.

5) The sender calculates the public key of the recipient’s stealth address as

P = XOF(ρK) ·XOF(S) + Decompressq(tK , dt).

6) The sender publishes their ephemeral public key R to the ephemeral public key
registry as well as a view tag (one or more bytes of the hash of S).

7) The sender sends assets to the recipent’s stealth address.

8) To discover the stealth address belonging to them, the recipient scans all new
ephemeral public keys in the ephemeral public key registry since their last scan.
Recipient for each retrieved value Ri calculates the shared secret by calling
Kyber.CCA.Decaps function as

Si = Kyber.CCA.Decaps(v, zv, V, Ri).

After that, the recipient compares one or more bytes of the hash of Si with the
view tag until it matches.

9) Let’s use Rj to mark the ephemeral public keys for which the view tag matches.
The recipient calculates the public keys Pj in the same way as the sender. Then
the recipient calculates the address and checks if it is the stealth address to
which the sender sent the assets.

10) The recipient derives the private key that corresponds to the new stealth address.
The private key p of the stealth address is

p = k +XOF(S)

and can only be calculated by the recipient, as this requires the private key k,
which only the recipient has.
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Note that the recipent’s public key P of the stealth address can only be calculated
by the sender (who has the private randomness l) and the person who holds the viewing
key v (recipient and, for example, a tax inspector). Also note that the private key p
of the stealth address corresponds to the public key P of the stealth address, because
it is

P = XOF(ρK) ·XOF(S) + Decompressq(tK , dt) == XOF(ρK) · p+ e1,

where e1 can be calculated by the recipient as

e1 = Decompressq(tK , dt)−XOF(ρK) · k.

Figure 2: Module-LWE Stealth Address Protocol

5.4 Ring-LWE Stealth Address Protocol

The Ring-LWE version of our stealth address protocol uses NewHope [39] as the
underlying KEM. The security of this protocol is grounded in the hardness of the
Search-RLWE problem (see Definition 10 in subsection 3.3). In particular, the Search-
RLWEq,χ,m problem involves recovering a secret k ∈ Rq given m samples drawn from
the Ring-LWE distribution Ak,χ (see Definition 9 in subsection 3.3).

The main idea is to use NewHope’s PKE as a building block for NewHope KEM.
Instead of Kyber’s KeyGen, Encaps and Decaps functions, we use NewHope’s corre-
sponding KeyGen, Encaps and Decaps functions.
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Given a shared secret S, the recipient calculates the public key of the stealth
address as follows

P = A(k +XOF(S)) + e1,

where A ∈ Rq is a public value, k ∈ Rq is the private key of the recipient’s stealth
meta-address, and e1 ∈ Rq, which represents the added noise, is the polynomial whose
coefficients are sampled from the Bη distribution (see Definition 19). The private key
of the stealth address is

p = k +XOF (S).

This construction ensures that the private key p cannot be recovered from the public
values and thus provides security for the recipient.

5.5 LWE Stealth Address Protocol

The LWE version of our stealth address protocol employs FrodoKEM [40], leveraging
the same principles as Kyber and NewHope. The protocol’s security builds upon the
foundational LWE problem, characterized as Search-LWEn,q,χ,m (see Definition 7 in
subsection 3.2). This problem requires recovering a secret k ∈ Zn

q given m samples
from the LWE distribution Ak,χ (see Definition 6 in subsection 3.2).

FrodoKEM relies on FrodoPKE for the implementation of the KeyGen, Encaps
and Decaps functions required in the protocol.

Similar to the Ring-LWE protocol, the recipients calculates the public key of the
stealth address as follows

P = A(k +XOF(S)) + e1,

where A ∈ Zk×k
q is a public value, k ∈ Zk

q is the private key of the recipient’s stealth
meta-address, and sample e1 ∈ Zk

q from Bk
η represents added noise. The private key

of the stealth address is
p = k +XOF (S).

Unlike Module-LWE and Ring-LWE SAPs, the LWE SAP does not use a polynomial
ring structure. This leads to a larger key size, but is based on simpler underlying
mathematics. However, LWE SAP is the slowest of these protocols as it has a lower
time efficiency due to the lack of optimizations from the polynomial ring structure.

6 Implementation results

In our implementation of the LWE, RLWE and MLWE stealth address protocols,
we used the programming language Rust together with the libraries KyberKEM [36],
NewHope [37] and FrodoKEM [38]. The complete implementations of our three PQ
stealth address protocols are available in the GitHub repository [35].

Since the most critical aspect to optimize in stealth address protocols is the recipi-
ent’s scanning of announcements (ephemeral public keys) within the ephemeral public
key registry, subsection 6.1 focuses on the comparison of this specific component in our
three PQ stealth address protocols. We also compare the scan time of the ephemeral
public key registry in the MLWE SAP in three variants:

• without view tag;

• view tag is one byte of hash(S);

• view tag is full hash(S),
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where S is the shared secret and the hash function used is SHA-256. In subsection
6.2, we extend the analysis by comparing the scan time of the ephemeral public key
registry using our most efficient protocol from this paper (MLWE SAP) with the
current fastest non-PQ protocols, specifically ECPDKSAP (Curvy protocol). In sub-
section 6.3 we compare the scan time of the ephemeral public key registry for different
KEM parameters of Kyber, NewHope and Frodo. The experiments were performed
on Macbook Air with M2 (8-core) chip and 8GB RAM.

6.1 Comparison of LWE, RLWE and MLWE SAPs

In this experiment, as in the experiments in subsections 6.2 and 6.3, 10 seeds were
randomly selected to generate private keys and announcements to ensure consistency.
The average execution time was measured and used for comparison.

Figure 3: Performance comparison of Kyber512, NewHope512 and Frodo640

All three algorithms (Kyber512, NewHope512, Frodo640) have the same security
level, which corresponds approximately to AES128. For this security level, we have the
best performance with sufficient security guarantees, similar to the choice of BN254
in [20].

Figure 3 shows a comparison of scan times for the ephemeral public key registry
with different numbers of announcements (5000, 10000, 20000, 40000 and 80000) for
the LWE, RLWE and MLWE protocols. In all scenarios, the view tag is set to one
byte of hash(S), where S is the shared secret.

Note that the LWE protocol gives the worst results for all numbers of announce-
ments, while the MLWE protocol gives the best results for all measurements. Specif-
ically, for 80000 announcements, MLWE SAP outperforms RLWE SAP by 40% and
LWE SAP by 98.6%. Since MLWE SAP is our best performing protocol, we will only
analyze its performance in the rest of this section.
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Figure 4: Module-LWE SAP - Performance comparison between the full hash(S)
view tag, one byte of hash(S) and without view tag

In all our PQ SAPs, the view tag can be of any size by using bytes of hash(S)
without compromising security. The reason for this is that the shared secret is used
directly to calculate the public key of the stealth address and not its hash. Therefore,
the full hash(S) can also be used as a view tag for optimization purposes. We measured
how much improvement MLWE SAP can achieve by increasing the view tag to the
full hash(S). We also looked at the MLWE SAP version without the view tag. The
comparison of the scan times of the ephemeral public key registry with a different
number of announcements (5000, 10000, 20000, 40000, 80000 and 1000000) is shown
in Figure 4. A view tag of one byte brings a considerable acceleration compared to
the version without a view tag (an improvement of 25.12% in the case of 1000000
announcements). Increasing the view tag to the entire hash(S) brings only a small
additional acceleration (0.7% in the case of 1000000 announcements) and requires
considerably more memory space. Due to the trade-off between the efficiency of the
scan time and the required storage space, a view tag of one byte is therefore the best
choice.

6.2 Comparison of MLWE SAP with Curvy protocol

Figure 5 shows a comparison of the scan times of the ephemeral public key registry
for different numbers of announcements (5000, 10000, 20000, 40000 and 80000) of
our implementation of MLWE SAP with the implementation of Protocol 3 (Curvy
protocol) from the paper [20] (currently the most efficient SAP). The size of the view
tag is 1 byte for both protocols.
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Figure 5: Performance comparison between MLWE SAP and Curvy protocol

The implementation of MLWE SAP shows a significant improvement compared to
the mentioned implementation of the Curvy protocol (Protocol 3 from the paper [20]
- the best performing protocol from this paper). For each number of announcements
(5000, 10000, 20000, 40000 and 80000) the scan time of the ephemeral public key reg-
istry was reduced by about three times, especially in the case of 80000 announcements
we achieved an improvement of 66.8%.

Note that the MLWE SAP provides post-quantum security, while the Curvy pro-
tocol does not (since the security relies on the EC discrete logarithm problem), but
also provides better efficiency than the Curvy protocol. However, the MLWE SAP is
not Ethereum-friendly and its implementation therefore requires Ethereum to become
a PQ blockchain.

6.3 Comparison of different KEM parameters

In subsection 6.1, we compared Kyber512, NewHope512 and Frodo 640, which corre-
spond to the security level of AES128. There are other variants of these algorithms.
The difference between these algorithms lies in the chosen parameters and their secu-
rity levels. That is, Kyber768 and Frodo976 correspond to AES192 (NewHope does
not have a version that corresponds to AES192), and Kyber1024, NewHope1024 and
Frodo1344 correspond to AES256 in terms of security.

Table 1 illustrates a comparison of different parameter values for different KEMs
using one byte of hash(S) as view tag for 5000 announcements.

In the most secure setting, Kyber1024 showed an improvement of 30% and 99%
compared to NewHope1024 and Frodo1344 respectively. For Kyber768 and Frodo976,
this improvement was again 99%.
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Time (ms) Paramset
87 Kyber512
141 Kyber768
205 Kyber1024
148 NewHope512
293 NewHope1024
6444 Frodo640
13975 Frodo976
24806 Frodo1344

Table 1: Time for different KEM parameter sets

7 Conclusion

The main goal of this paper is to obscure the connection between the recipient and their
address to ensure privacy even against quantum computer attacks, while maximizing
efficiency. To this end, we first provide an overview of stealth address techniques that
have been used in previous research and present the most widely used protocol so far,
the Dual-Key Stealth Address Protocol (DKSAP) [5], and the most efficient protocol,
ECPDKSAP (Protocol 3 from [20]).

We propose three new post-quantum protocols based on the LWE technique: LWE
SAP, Ring-LWE SAP and Module-LWE SAP. The paper shows how the privacy of
transaction recipients can be preserved using post-quantum cryptography. Further-
more, we compare all of our proposed protocols in terms of their efficiency, focusing
on the time required for a recipient to compute the public key for their new stealth
address. These comparisons also include the Curvy protocol (Protocol 3 from [20]).

The results clearly show that our Module-LWE SAP is the most efficient and
outperforms the Curvy protocol. In particular, our Module-LWE SAP takes about
15 times less time to compute the recipient address compared to DKSAP and about
three times less time compared to Curvy.

One observation we made while benchmarking various operations in our protocol
is that the time-consuming processes are predominantly from the Key Encapsulation
Mechanism (KEM) itself and not from the computation of the stealth address public
key. Consequently, efforts to optimize the underlying KEM could lead to significant
improvements.

Furthermore, all protocols presented in this paper are quantum resistant and are
expected to play an important role in the future, especially when blockchains adopt
larger key sizes and the security of current protocols becomes compromised.
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Lyubashevsky, John M. Schanck, Peter Schwabe, Gregor Seiler, Damien Stehlé,
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