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Abstract. In the HQC cryptosystem, the length n of the code deter-
mines several concrete parameters such as the bandwidth usage, the
memory consumption, or the decoding efficiency. In this paper, we show
that currently known methods to explicitly generate asymptotically good
(especially with high relative distances), binary codes with efficient as-
sociated procedures cannot be used to improve n. We also show that
concatenated codes are currently better suited, and by exhausting small
codes, find a closer to optimal concatenated code for HQC, which im-
proves upon currently used codes.

1 Introduction

In 1978, Robert J. McEliece set up the ground for using error-correcting codes
to obtain a public key encryption scheme. He proved that this can be achieved
by encoding a plaintext into a codeword, and then blur the resulting vector with
a fixed weight error vector. The legitimate recipient then uses its secret decoder
to remove the noise and recover the message. McEliece was able to reduce the
hardness of message recovery attacks to solving the syndrome decoding problem.
However, key recovery attacks rely on a more intricate notion: distinguishing the
family of codes being used from random linear codes.

Numerous works trying to improve the efficiency of the McEliece framework
have turned insecure due to distinguishing attacks. Although this has been dealt
by Alekhnovich’s blueprint [1], no efficient construction was proposed until HQC
[2].

HQC uses two different codes: the first one being a random quasi-cyclic code
of index 2 (meaning rate 1

2 ) that serves to bind the private and public keys
and no efficient decoding algorithm is known for that code; the second is left
to the choice of the person generating the parameters (concatenated RMRS are
suggested in [3]), and the associated efficient decoding algorithm is known to
everyone.

Therefore, to produce a ciphertext, a large error (of weight above the cor-
rection capacity of the code) is added to the encoded message such that even
the knowledge of the decoder does not help decoding. Only the secret key al-
lows to remove sufficiently many errors to make the ciphertext decodable. The
cryptosystem is presented in Figure 1.
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Parameters:
O n, k, w,wr, we, C of generator matrix G∈ Fn·k

2 ,
O R = Fn

2 [X]/(Xn − 1),
O Rw = {x ∈ R|HW (x) = w}
KeyGen():
O h $←−− R,
O sk = (x,y) $←−− Rw ×Rw,
O pk = (h, s = x + h · y)
Encrypt(pk, m∈ Fk

2):
O e $←−− Rwe ,

O r = (r1, r2)
$←−− Rwr ×Rwr ,

O ct = (u,v) = (r1 + h · r2, mG + s · r2 + e)
Decrypt(sk, ct):
O m′ = C.Decode(v− u · y)

Fig. 1. The HQC cryptosystem.

The most determinant parameter in HQC’s performance is n. The private,
public key, and ciphertext (denoted sk, pk, and ct) are of size 2n, and the product
of elements in R is computed as the product of a n-by-n circulant matrix and
a n-by-1 vector. All other parameters have constraints and are already at their
minimum values: k must be at least the security parameter λ since it is also the
size of the message. The noise levels w,wr, we have values large enough to ensure
the hardness of the Syndrome Decoding (SD) problem. These values are also the
smallest possible in order to decrease the remaining noise level before decoding
in Decrypt. This noise level, called Bit Error Rate (BER) (denoted p⋆) creates
a constraint on the code C since it should fail to decode legitimate ciphertexts
with negligible probability, called Decoding Failure Rate dfr(p⋆) ≤ 2−λ. The
smaller p⋆, the smaller the code length n can be.

Every parameter except n is therefore minimal to ensure the cryptosystem
security requirements. We recall the values used for the NIST submission [3]
in table 1. Note that in order to avoid structural (folding) attacks such as [4]
and [5], the length of the code has to be a primitive number.

Table 1. Parameter sets for HQC

Category nHQC k w wr we

I 17669 128 66 75 75

III 35851 192 100 114 114

V 57637 256 131 149 149
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Codes of interest in the HQC cryptosystem therefore need to meet the fol-
lowing requirements:

– The code should be binary;
– The dimension should at least equal to the security parameter: k ≥ λ;
– The code should be asymptotically good, meaning that asymptotically both

the rate k/n and relative distance d/n should be non-zero;
– The construction of the code should be explicit;
– Encoding should be efficient;
– Decoding should be efficient, such that

DFR = − log2(dfr(p
⋆
(n,w,we,wr)

)) ≥ λ

In Section 2, it is shown that the current methods are not satisfying in pro-
ducing such a code if it is constructed as a single binary code. In Section 3, we
instead look at the construction of a concatenated code and explore all options
to propose new codes with a smaller length n than in HQC.

2 Designing Binary codes

2.1 Decoding Failure Rate

The DFR can be upper bounded in multiple ways. The most conservative upper
bound consists in considering that as long as the number of errors is greater
than the error-correction capacity, the decoding fails. This yields the following
inequality:

dfr(p⋆) ≤
n∑

i=t+1

(
n

i

)
(p⋆)i(1− p⋆)n−i. (1)

This bound is only met in Maximum Distance Separable (MDS) codes, where
every Fn

2 element is at most at distance t = d−1
2 of a codeword. In the design

document of HQC, another bound is introduced [6], which fits more tightly the
experimental observations. The idea is that in non-MDS codes, it is possible
for minimum distance decoding to correct more than t errors. Any point at a
distance slightly greater than t of any codeword still has a high probability that
it is not closer to another codeword.

dfr(p⋆) = (2k − 1)

d∑
i=d/2

(
d

i

)
(p⋆)i(1− p⋆)d−i (2)

This formula is designed for Reed-Muller (RM) codes of order 1 because their
structure guarantees that every two nonzero codewords are at distance d of each
other. This can be used as an upper bound for the general case where the average
distance between codewords is greater than d.
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2.2 Bounds on codes characteristics

The first theoretical limit on the minimal length of the code is given in [7]. It is
nmin = 13534, 31411 and 45064 for categories I, III, and V respectively. This is
14% to 24% lower than the current codes used in HQC. Given a chosen n, there
is a minimal d that gives a DFR ≥ λ, as can be seen in Figure 2.

It is known as the Plotkin bound that binary codes can have at most relative
distances δ = d

n of 1
2 . Although some code families reach this bound (for instance,

Reed-Muller codes of order 1), there is no guarantee of the existence of a [n, k, n ·
1
2 ] code for most n and k. However, it is also known, as the Gilbert-Varshamov
bound, that for every 0 ≤ δ < 1

2 there exists a family of binary codes with rate
R ≥ 1−H(δ) and relative distance δ, where H is the binary entropy function:

H(p) = −p log2 p− (1− p) log2(1− p).

Fig. 2. Above the blue line, codes are usable for HQC. Below the green line, codes are
guaranteed to exist. Above the red line codes are guaranteed to not exist. The dashed
black line represents the theoretical minimum for HQC [7]. k = 128.

This two bounds gives us a space in which we know codes exist, but with
no explicit construction. This search space is the area above the blue and below
the green line. Note that the codes that are the furthest from the GV bound
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(and therefore probably easier to find) with n = nHQC are [17669, 128, 3211],
[35851, 192, 6603], and [57637, 256, 10433]. The smallest code for HQC with a
guaranteed existence is [13883, 128, 6173] (a code with n = 13878 exists, but
it would need to be extended so that its length is a primitive number). The
hypothetical smallest n ≥ nmin code is [13613, 128, 6543], and for information,
the intersection of the Plotkin Bound and the DFR line is [13478, 128, 6739].

The situation is very similar for category V, however, for category III, the
nmin = 31469 vertical line is placed on the left side of the intersection of the
blue and green lines, as the DFR of the GV code [31469, 192, 14309] has a DFR
of 378. This suggests that it could be interesting to increases the noise values
w,wr, we to lower nmin while increasing SD security.

2.3 Generating codes with expansion methods

To illustrate the difficulty of generating codes in the search region, in cate-
gory I, the closest Bose-Chaudhuri-Hocquenghem (BCH) Code with nmin ≤
n ≤ nHQC and k ≥ 128 is the [1023, 133, 179] BCH code duplicated 17 times,
i.e. [17391, 133, 3043], which has a relative distance of only 0.175 while the GV
bound guarantees that codes with the same length and distances up to 7835
exist (relative distance 0.45).

However, there exists some families of codes known to reach the GV bound,
for instance the random codes. In [8] section 2.1 shows that random codes of
rate R = 1 − H(δ) have an average relative distance of δ. Two problems arise
when using these codes for HQC: first, there is no guarantee on the distance,
and computing it is exponential in k = λ, which is not doable by design. Second,
There would be no easy to determine decoding algorithm that runs in polynomial
time, since the algorithm working for any code, minimum distance decoding, is
exponential.

A few methods are known that try to replicate the GV-reaching properties
of random codes while preserving a structure, in order to have both distance
properties and efficient decoding. These are based on expanding a starting code
[n0, k, n · 1−ϵ0

2 ] into a larger one [n1, k, n · 1−ϵ1
2 ], where n1 > n0 and ϵ1 < ϵ0.

This section shows that all the currently known constructions based on this
approach ϵ1 low enough to be useful for HQC only when n1 is larger than the
current parameters for HQC. For information, the HQC-equivalent binary codes
mentioned earlier have ϵ slightly above 0.63 for all categories, and lower epsilons
are required to reach lower n.

The AGHP constructions In these constructions and all that follows, the
starting code is viewed as the set S0 of columns of its generating matrix (n
elements of Fk

2). This set is said to be (n, k, ϵ)-biased if the distance between two
codewords is always between ( 1−ϵ

2 )n and ( 1+ϵ
2 )n. The main idea is to generate

sets with arbitrarily small bias. Note that these methods all start with a fixed k
and do not change it.
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In [9], it is shown that a (n, k, ϵ)-biased set can be constructed with support
size n ≤ 2k2

ϵ2 . With k = 128/192/256 and ϵ always smaller than 1, the minimal
support (code length) is n = 32768/73728/131072 which is above nHQC for all
security categories.

Random sampling This method allows to create a set S1 of bias smaller than
the starting set by sampling all combinations of t elements from the starting set
{(z1, · · · zt)|zi ∈ S0}, and defining S1 as the set of all

⊕t
i=1 zi. This set is of

support nt
0 and has a bias of ϵt0.

The case t = 1 leaves the set as is. For t = 2, if we wanted to have a n1

less than nHQC , there would have to be some n0 ≤ 132/189/240. For category
I and k = 128, it is possible to retrieve from [10] that the best known code is
[132, 128, 2], which has ϵ0 ≈ 0.97, which gives an unsatisfying ϵ1 ≈ 0.94. For
categories III and V, n0 < k and therefore there is no possible starting code that
improves the bias with support small enough. For the same reason, a bigger t
will also not work, for all categories.

Random walks of length one This technique, attributed in [11] to Rozenman
and Wigderson [12] consists of replacing the uniform sampling by a pseudo-
random one. To do so, they rely on an expander graph. These are of order
n, are D-regular and are noted (n,D, λ). Such regular undirected graphs have
Hermitian transition matrices with real eigenvalues λ1 = 1 ≥ λ2 ≥ · · · ≥ λn. λ
denotes the maximum between λ2 and −λn. Good expander graphs will have a
lower λ, with optimal expanders called Ramanujan that verify λ ≤ 2

√
D−1
D .

Taking all the (i, j) edges of the expander graph allows to create the set of
all zi ⊕ zj , which is proved to have bias ϵ1 = λ + ϵ20. In order to have a bias
improvement ϵ1 < ϵ0, we need to have λ < 0.25. With a Ramanujan expander,
having a λ this low requires at least D ≥ 63 and therefore a n0 ≤ 280. While a
[280, 128, 70] code is not known yet, it is still slightly above the Griesmer lower
bound on n for this k and d, which indicates that it may exist.

However, if we take the problem from the other side, the closest currently
known code (as listed in [10]) is [256, 128, 38], which has ϵ0 ≈ 0.70 and therefore
requires λ < 0.209 to give an improvement, which implies D ≥ 91, and therefore
a n1 ≥ 23296 > nHQC . The problem is the same or worse for the other security
categories, given that less good codes with k = 192 or k = 256 are explicitly
known.

Random walks of length t This construction is discussed in detail in [11],
as a way to get codes closer to the GV bound. It requires the introduction of
a much smaller second graph (D,D2, λ2) and a map between the D edges of
each vertex of the first graph and the vertices of the second graph. By using this
map, walks are made alternatively on the two graphs, which gives a better bias.
It produces a set with support n1 = n0D

t
2, with a bias ϵ1 = (ϵ0 +2β+2λ2)

⌊t/2⌋,
for a small positive β.
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Even with β = 0, improving the bias requires t ≥ 4. In order to have λ2 = 0.25
small enough to make any improvement, even with Ramanujan graphs, the same
D2 ≥ 63 is required, which already gives Dt

2 ≫ nHQC .

Ta-Shma s-wide walks This method produces explicit binary codes asymp-
totically even closer to the GV bound [11]. To do so, the second graph is taken
to be (Ds, D2, λ2). It changes the definition of walks in the first graph to have
s coordinates, and at step t, the walk over the second graph corresponds to a
change to the coordinate tmod s of the path in the first graph.

This construction, while asymptotically a better construction than the previ-
ously mentioned ones, has a support size of n0D

sDt
2. There is not a single choice

of D,D2, t and s that would give any bias improvement for values of n small
enough to be useful in HQC. Additionally, codes created by this method do not
have known efficient decoders without the following adaptation.

Jeronimo construction This last method [13] solves the decoding limitation
of Ta-Shma codes by adapting the construction with a small compromise on
GV proximity. However, the proposed decoding is a list decoding, which cannot
be used for HQC. The proposed unique decoding algorithm only works to half
the minimum distance of the code. In order for the code to meet the DFR
requirement, it would need to have twice the distance. Even if some such codes
are still under the GV bound, this reduces ϵ, when the supports of codes created
with this construction are larger than Ta-Shma ones.

To conclude this section, binary codes that could be used for HQC are cur-
rently either too big to be defined explicitly with a formal proof on their min-
imum distance, or too small to be generated through an expansion method. It
remains possible, instead of using an unique binary code, to use multiple codes
in different characteristics, a technique commonly known as code concatenation.

3 Concatenated codes

Code concatenation is a technique allowing to benefit from codes that have a
very high relative distance at the expense of a very low rate on one hand, and
on the other hand from codes with very high rate but a less than ideal relative
distance [14].

In a concatenated code, a message is composed of k2 elements of size k1. It is
first encoded with a code C2[n2, k2, d2]qk1 , returning n2 elements of size k1. Each
of those is then encoded in a C1[n1, k1, d1]q code, each returning n1 elements in
Fq. A code defined this way is a [n1n2, k1k2, d1d2]q code. Decoders must then be
used in reverse order. First, the q-ary input is decoded with the C1 decoder over
blocks of size n1, returning n2 elements of size k1 that are then decoded with
the C2 decoder.

There is a well known result on the lower bound of rates reachable by con-
catenated codes given a relative distance called the Zyablov bound [15]. Codes
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meeting this bound are constructed by setting C1 as a code with good relative
distance, for instance a code on the GV bound, and setting C2 as an MDS code.
This construction allows concatenated codes with asymptotically low rates to
approach the GV bound.

3.1 HQC codes

In the Round 4 HQC cryptosystem, the codes in use are, first, a Duplicated
Reed-Muller of order 1 for C1. This family of codes is optimal since they have
a relative distance δ = 1

2 , which is even better than the GV bound for codes of
this length. Second, a shortened Reed-Solomon code is used for C2, which is an
MDS code.

The exact codes currently used in HQC are shown in Table 2, where SD is the
hardness level of the syndrome decoding as estimated by [16]. The SD hardness is
minimal to meet the NIST requirements. The values are based on the complexity
of brute-forcing AES with key sizes of 128/192/256, which adds 15 to λ. The
remaining margin is to ensure to be out of reach of some attacks such as DOOM
(an additional log2(

√
n) bits of security are required) [17]. Notice that n > n1n2

because n has to be a primitive number to avoid folding attacks [4]. It is therefore
the smallest primitive number greater than n1n2.

Table 2. Current concatenated codes for HQC

Cat. n k SD DFR
Reed-Muller Reed-Solomon

[n1, k1, d1]2 [n2, k2, d2]2k1

I 17669 128 152 141 [384, 8, 192] [46, 16, 31]28

III 35851 192 222 201 [640, 8, 320] [56, 24, 33]28

V 57637 256 283 272 [640, 8, 320] [90, 32, 59]28

Although these are good codes for HQC, there is no design explanation on
the choice of these specific codes. Also, it can be noted that the DFRs are above
their expected minimal value of λ, which seems to indicate that a margin to
reduce n exists. The goal of the following section is to explain how we found
codes with a length n lower than the codes used in HQC.

3.2 Experiments and results

As discussed in previous sections, concatenated codes are better suited for an
HQC usage. The choice of Duplicated order 1 Reed-Muller with Shortened Reed-
Solomon codes is optimal for the concatenated code construction, therefore, we
can only search for other combinations of codes in the same families. With the
objective of finding the single best possible concatenated codes, we evaluated
the DFR over all possible combinations of Duplicated order 1 Reed-Muller and
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Shortened Reed-Solomon codes. The Duplicated Reed-Muller codes have the
following form: [m·2k1−1, k1,m·2k1−2], and Shortened Reed-Solomon codes have
the form [n2, k2, n2 − k2 + 1], which reduces the search space to four variables:
k1,m, k2, n2. The limits are the following :

– k1 is between 2 and ⌊log2(nHQC)⌋. This way, n1 = 2k1−1 is at least small
enough for n2 to be an integer and n1n2 ≤ nHQC .

– k2 must be large enough so that k1k2 ≥ λ
– m has to be such that nmin ≤ m · 2k1−1 · n2 ≤ nHQC (or more precisely, the

largest primitive number smaller than nmin plus one) n2 , and small enough
for n2 to be an integer.

– Finally, n2 goes from k2 to 2k1 − 1.

We ran DFR computations for each of these codes and for each security
parameter. We then extracted all codes with DFR ≥ λ and sorted them by
length. The best codes for each security category is presented in Table 3. By
precaution, we also ran tests with noise levels one higher than the ones currently
used in the NIST submission. Only one code in this configuration returned with
length at least equivalent to the official one, which is noted III* (w = 101, wr =
we = 115). SD hardness and DFR are rounded down.

Table 3. Best concatenated codes for HQC

Cat. n k SD DFR
Reed-Muller Reed-Solomon

[n1, k1, d1]2 [n2, k2, d2]2k1

I 16901 130 132 128 [512, 10, 256] [33, 13, 21]210

III 35339 200 222 197 [512, 10, 256] [69, 20, 50]210

III* 35851 200 223 202 [512, 10, 256] [70, 20, 51]210

V 56333 264 283 267 [1024, 11, 512] [55, 24, 32]211

Here are some remarks about the results:

– The reduction of n is 4.4% / 1.4% / 2.2% according to the category (III*
does not change n, just the SD security).

– The dimension k is higher than λ.
– The DFR margins are reduced as expected.
– The dimension of the Reed-Muller codes are no longer 8. It also seems that

the duplication is not a good idea to optimize n (as m = 1 in each of our
proposed codes).

3.3 Impact of the changes

As stated in the Introduction, in HQC, all key sizes are linearly dependent on
n, therefore, the gain will be 4.4% / 1.4% / 2.2%. Throughout the scheme, all
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random samplings, as well as additions in R are run in O(n) time, and can
expect the same improvements. All products in R have a complexity in O(n2),
and can expect improvements of 8.5% / 2.8% / 4.4%. This improvements may
vary depending on the computer architecture and available parallelism.

However, the decoding algorithm is more dependent on the codes. For in-
stance, order 1 Reed-Muller codes can be decoded using the Fast Hadamard
Transform [18], which has a complexity of O(n1 log n1). Since this decoding has
to be done over n2 blocs, the total complexity is in O(n1n2 log n1), which then
represents a change of +0.3% / -4.8% / +4.9%.

For the Reed-Solomon decoding, the Berlekamp-Massey algorithm is used,
which has a complexity of O(n2

2) operations in F2k1 [19]. The resulting changes
in the number of operations is of -48% / +52% / -62%. The complexity of each
operation is very dependent on the implementation and the computer architec-
ture, and may change because of the changes in k1.

In order to get a general idea on the effect of the proposed changes on the
decryption computation time, we evaluated the cycle counts of each subrou-
tine on a single code 32-bit RISC-V, with no SIMD capacity or other hardware
accelerator for HQC and obtained the results displayed in Table 4.

Table 4. Cycle counts and relative proportions for HQC Decrypt subroutines on a
32-bit RISC-V

Category v− u · y Reed-Muller Reed-Solomon

I 39231162 456405 4276642

89.23% 1.04% 9.73%

III 120618333 674453 5499330

95.13% 0.54% 4.33%

V 220572495 1083912 13424979

93.83% 0.46% 5.71%

The expected changes on the whole Decrypt routine computation times con-
sidering these proportions should be around -8.6% / -2.0% / -6.1%.

4 Conclusion

This paper uses two approaches to try to optimize the length n of the code
used in the NIST round 4 HQC cryptosystem. The first approach consists in
finding a single binary code with enough error correction capacity in order to
keep the decryption error rate below the security parameter for each security
category. While the GV bound ensures the existence of better codes, we show
that the current methods that creates codes close to this bound asymptotically
are not able to reach this proximity for n small enough for HQC. Now that
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near-optimal expanders have been found, a good research perspective could be
to find trade-offs between asymptotical bias and minimum support for a given
bias.

The second approach is therefore to use codes in different characteristics (con-
catenated codes). The families of codes currently in use in HQC are optimal for
concatenated codes. Our contribution is to provide the single best concatenated
codes by an exhaustive search over all parameters of Duplicated Reed-Muller -
Shortened Reed-Solomon concatenations. We found 3 optimal codes improving
the code length and one improving security. We also proposed an estimate of the
impact of the change of codes over HQC performance.
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