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We report observation of an inverse energy cascade in second sound acoustic turbulence in He II. Its
onset occurs above a critical driving energy and it is accompanied by giant waves that constitute an
acoustic analogue of the rogue waves that occasionally appear on the surface of the ocean. The theory of
the phenomenon is developed and shown to be in good agreement with the experiments.
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A highly excited state of a system with numerous de-
grees of freedom, characterized by a directional energy
flux through frequency scales, is referred to as turbulent
[1,2]. Like the familiar manifestations of vortex turbulence
in fluids, turbulence can also occur in systems of waves,
e.g., turbulence of sound waves in oceanic waveguides [3],
magnetic turbulence in interstellar gases [4], shock waves
in the solar wind and their coupling with Earth’s magne-
tosphere [5], and phonon turbulence in solids [6]. Follow-
ing the ideas of Kolmogorov, the universally accepted
picture says that nonlinear wave interactions give rise to
a cascade of wave energy towards shorter and shorter
wavelengths until, eventually, it becomes possible for vis-
cosity to dissipate the energy as heat. Experiments and
calculations show that, most of the time, the Kolmogorov
picture is correct [2,7,8].

We demonstrate below that this picture is incomplete.
Our experiments with second sound (temperature-entropy)
waves in He II show that, contrary to the conventional
wisdom, acoustic wave energy can sometimes flow in the
opposite direction too. We note that inverse energy cas-
cades are known in 2-dimensional incompressible liquids
and Bose gases [9], and have been considered for quantized
vortices [10].

We find that energy backflow in our acoustic system is
attributable to a decay instability (cf. the kinetic instability
in turbulent systems [11]), controlled mainly by nonlinear
decay of the wave into two waves of lower frequency
governed by the energy (frequency) conservation law [2]
!1 � !2 �!3. Here !i � u20ki is the frequency of a
linear wave of wave vector ki and u20 is the second sound
velocity at negligibly small amplitude. The instability
manifests itself in the generation of subharmonics. A quite
similar parametric process, due to 4-wave scattering
(modulation instability), is thought to be responsible for
the generation of large wind-driven ocean waves [12].
Decay instabilities (especially threshold and near-
threshold behavior) have been studied for, e.g., spin waves
[13], magnetohydrodynamic waves in plasma [14], and
interacting first and second sound waves in superfluid
helium near the superfluid transition [15].

We now discuss what happens to a system of acoustic
waves far beyond the decay threshold. Modeling the re-
sultant nonlinear wave transformations in the laboratory is
a potentially fruitful approach that has already yielded
important results for, e.g., the turbulent decay of capillary
waves on the surface of liquid H2 [16]. Here, we exploit the
special properties of second sound [17], which enable
fundamental wave processes to be studied under laboratory
conditions. Its velocity u2 depends strongly on its ampli-
tude �T and can be approximated as

 u2 � u20�1� ��T�; (1)

where the nonlinearity coefficient � [18], which deter-
mines the strength of the wave interactions, can be made
large if the temperature is set right.

Our experiments make use of the high Q cryoacoustical
resonator described previously [7], excited close to one of
its resonant frequencies. It enables very large second sound
standing wave amplitudes to be attained for modest levels
of excitation. Its Q factor, determined from the widths of
longitudinal resonances at small heat flux densities, was
Q� 1000 for resonant numbers p � 10 and Q� 3000 for
30< p< 100. Figure 1 presents typical results obtained
when driving at a relatively high resonant frequency !d
(the 96th longitudinal resonance of the cell). Those in
Figs. 1(a) and 1(b) reproduce our earlier observation of
the direct Kolmogorov-like cascade of second sound waves
in He II [7], when driving on resonance. Figures 1(c) and
1(d) show that tiny changes in driving frequency can
produce marked changes in the shape and spectrum of
the standing wave. The formation of the spectral peaks
near 1

2 , 1
3 , and 2

3�!d satisfies the frequency conservation
law with !1 � !d, supporting our inference that the in-
stability is controlled mainly by 3-wave interactions. When
the instability develops, huge distortions of the initially
periodic signal occur. Although it remains nearly periodic,
its characteristic period exceeds that of the driving force
and its amplitude can become more than twice that at the
driving frequency.

To characterize the instability quantitatively, we use the
energy contained in the low-frequency part of the spectrum
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as an indicator. Figure 2 shows the dependence of ELF on
the ac heat flux density W, when driving on the 96th
resonance close to 2.08 K. For small W we did not observe
any subharmonic generation at all [7]. Then, above a
critical flux Wc, ELF rose rapidly, suggesting that the
phenomenon is of a threshold character. At T � T� �
1:88 K for which � vanishes [18], no subharmonics were
observed, regardless of the magnitude of W, thus confirm-
ing the crucial importance of nonlinearity. For W above
10:4 mW=cm2, we observed a distortion of the signal
similar to that shown in Fig. 1(c) and the formation of a
few subharmonics. Further increase of W above
20 mW=cm2 led to the generation of multiple subhar-
monics. These phenomena appear in the regime where
the energy cascade towards the high-frequency domain
(i.e., direct cascade, with a Kolmogorov-like spectrum
[7,8]) is already well developed; see also Fig. 4.

All the above results correspond to steady-state regimes
of the wave system. In Fig. 3 we illustrate the transient
processes observed after a steplike shift of the driving

frequency from a frequency initially set far from any
resonance to the 96th resonance frequency for W �
42:1 mW=cm2, T � 2:08 K. We find that harmonics of
the drive in the high-frequency spectral domain are formed
very quickly, but that formation of the subharmonics takes
much longer: it took �0:5 s here, and can reach several
tens of seconds under some conditions [19]. It is evident
from the inset in Fig. 3 that, as the instability develops,
isolated ‘‘rogue waves’’ appear in the signal. As time

FIG. 2 (color online). The energy ELF contained in the low-
frequency part of the spectrum as a function of the ac heat flux
density W, while driving near to the 96th resonance for T ’
2:08 K. The threshold value of W, marked by the (green) arrow,
was Wc � 10:4 mW=cm2. The points are from experiment;
dashed lines are guides to the eye. Inset: The dependence of
ELF on !d, measured for W � 55:6 mW=cm2; the (red) arrow
labels the maximum value of ELF, which is taken to the main
figure.

FIG. 3 (color online). Transient evolution of the 2nd sound
wave amplitude �T after a steplike shift of the driving frequency
to the 96th resonance at time t � 0:397 s. Signals in frames 1
and 3 are similar to those obtained in steady-state measurements,
Figs. 1(a) and 1(c), respectively. Formation of isolated ‘‘rogue’’
waves is clearly evident. Inset: Example of a rogue wave,
enlarged from frame 2.

FIG. 1 (color online). Evolution of the observed wave shape in
the resonator (left column) and of the power spectrum of second
sound standing waves (right) with increasing drive frequency !d
near the 96th resonance: !d=2� � 9530:8 Hz (a),(b) and
9535.2 Hz (c),(d). The ac heat flux density was W �
42 mW=cm2. The temperature T � 2:08 K corresponded to
negative nonlinearity. The fundamental and first harmonic
in (b),(d) are indicated by vertical (green and blue) arrows at
�10 and 20 kHz; the low-frequency domain where the subhar-
monics appear is indicated by the horizontal range in (d) under
the leftmost vertical (red) arrows. The horizontal arrows
in (a),(c) indicate the fundamental period of a wave at the driving
frequency.
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evolves, the rogue waves appear more frequently and, at
the later stages, they merge resulting in the strong low-
frequency modulation of the signal observed in the steady-
state measurements (Fig. 1).

When the subharmonics appear, a marked reduction
occurs in the energy contained in the high-frequency spec-
tral domain; see Fig. 4. A substantial proportion of the
energy then flows from the driving frequency !d towards
the low-frequency domain !<!d leading to an accumu-
lation of wave energy there and a corresponding increase in
wave amplitude. The reduction of wave amplitude seen in
the high-frequency spectral domain is indicative of the
onset of energy backflow towards lower frequencies, i.e.,
a sharing of the flux between the direct and inverse energy
cascades. The decrease in energy at high frequencies
within 0:397< t < 1:3 s is attributable to relaxation pro-
cesses in the direct cascade. Redistribution of wave energy
due to sharing of the energy flux between the direct and
inverse cascades starts at t � 1:3 s. Note that the transient
evolution shown in Figs. 3 and 4 is incomplete. The for-
ward and inverse energy fluxes are still changing at t �
2 s, leading us to anticipate further relaxation oscillations
at longer times (inaccessible with our present equipment):
the transient dynamics is clearly complex, and a full char-
acterization will require further work. Absorption of wave
energy at low frequencies is probably attributable to vis-
cous drag of the normal fluid component on the resonator
walls, given that bulk second sound damping is negligibly
small in this frequency range: this would be consistent with

the observed strong decrease of the resonator Q factor
below 3 kHz. We observe hysteresis between increasing
and decreasing frequency scans (bars on data points in
Fig. 5). Its width, i.e., the region where the low-frequency
sound waves are metastable, was less than the viscous
width of the resonance.

To seek a more detailed understanding of wave energy
transformation in acoustic turbulence, we used a technique
[19] for direct numerical integration of the 2-fluid thermo-
hydrodynamical equations [17], expanded up to quadratic
terms in the wave amplitude. It represents the second sound
waves in terms of Hamiltonian variables [7,20], as in ear-
lier studies [8] of acoustic turbulence. Wave damping was,
however, taken explicitly into account at all frequencies, a
feature that is of key importance for a correct description of
subharmonic generation. The main results are summarized
in Fig. 5.

It is evident (inset of Fig. 5) that, for sufficiently high
driving amplitude W, the wave develops an instability with
respect to generation of low-frequency subharmonics of
the driving force at !d. For zero detuning from a cavity
resonance, the onset of the instability occurs at a threshold
W	 / 1=�. If the dimensionless frequency detuning j�j is
less than a critical value �	 � 1=Q, the instability has a
soft character, in that the amplitudes of the low-frequency

FIG. 5 (color online). Dependence of the ac heat flux density
W at which the instability develops on the dimensionless fre-
quency detuning � � �!d �!n�=!n of the driving force fre-
quency !d from a cavity resonance !n. Numerical calculations
(line) are compared with measurements (points) for driving at
the 96th resonance. Horizontal bars mark the widths of the
hysteretic region where second sound exists in a metastable
state. Inset: Bifurcation diagram showing regions of stability
(unshaded) and regions of instability (yellow shaded) against the
generation of subharmonics. The soft instability occurs over the
(orange) line between the (green) critical points at 
�	; outside
them lies the hard instability; W	 is the threshold value of the
instability.

FIG. 4 (color online). Instantaneous spectra in frames 1 and 3
of Fig. 3. The lower (blue) spectrum, for frame 1, shows the
direct cascade only; the upper (orange) spectrum, for frame 3,
shows both the direct and inverse cascades. The (green) arrow
indicates the fundamental peak at the driving frequency.
Inset: Evolution of the wave energy in the low-frequency and
high-frequency domains is shown by the (orange) squares and
(blue) triangles respectively; (black) arrows mark the positions
of frames 1 and 3.
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waves tend to zero at the threshold bifurcation line. Outside
this range, the low-frequency waves are characterized by
the hard onset observed experimentally. Measurements
(squares) are compared with theory (full line) in the main
part of Fig. 5. The hard onset is accompanied by a finite
jump in subharmonic amplitude. These two regimes of
behavior are separated by critical points on the bifurcation
line. The generation of subharmonics in the nonlinear
oscillatory system found numerically appears to be similar
to the bifurcation of an anharmonic oscillator [21]. We
estimated numerically that the critical detuning parameter
�	 at T � 2:08 K is close to 10�4, and that the critical ac
heat flux density W	 is equal to a few mW=cm2, in good
agreement with our observations. The experimental results
shown in Fig. 1 can be understood as corresponding to the
working point moving horizontally on the bifurcation dia-
gram (Fig. 5, inset) into the (yellow) shaded region from a
position just outside it, through the hard (blue) instability
line. Although nonlocal (in ! space) interactions between
waves at !d and low-frequency waves probably contribute
to the subharmonics, due to the finite width of the low-
frequency spectral domain, our numerical estimates show
that the interactions of high-frequency (!� !d) waves
with subharmonics are relatively weak, consistent with our
inference of two cascades.

Our experiments have revealed an inverse wave energy
cascade in a turbulent acoustic system. It is responsible for
a substantial increase in wave amplitude corresponding to
the formation of a set of huge low-frequency subhar-
monics. This instability develops through formation of
isolated low-frequency waves of amplitude higher than
that typical of waves around them. The latter can be
considered as the acoustic analogue of the giant ‘‘rogue’’
waves that occasionally appear on the ocean and endanger
shipping. Their origin lies in the development of a decay
instability of the periodic wave, i.e., a similar mechanism
to that proposed [12,22] (modulation instability) to account
for the creation of oceanic rogue waves [23]. Note that this
mechanism differs from an alternative explanation pro-
posed recently [24] that involves scattering of nonlinear
waves on a continuous noisy background.
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