
Counting HTTP

0.9 ... 3
Oleksii Kachaiev, @kachayev

Year Protocol

1991 HTTP/0.9

1996 HTTP/1.0

1997 HTTP/1.1

Feb, 2010 - Dec, 2011 WebSocket

Jul, 2012 - Feb, 2015 SPDY

Jun, 2014 revisioned HTTP/1.1

Aug, 2014 - May, 2015 HTTP/2.0

Jun, 2017 - Jul (?), 2019 HTTP/3.0

HTTP: The Idea

$ telnet 127.0.0.1 8080
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
GET / HTTP/0.9

HTTP/0.9 200 OK
Date: Sun, 08 Jul 2018 20:56:34 GMT
content-length: 18

hello, world

!

HTTP/0.9 ↠ HTTP/1.0

• New methods

• Content negotiation

• Optional "Host" header

• "Connection: keep-alive"

• TCP handshake is slow

• Even 20+ years ago it was a problem

HTTP/1.0 ↠ HTTP/1.1

• Mandatory "Host" header

• "100 Continue"

• Chunked & byte-range transfers

• Compression

• "Upgrade" header (TLS, websockets)

HTTP/1.1: Reduce Latency
• Defaults to "Connection: keep-alive"

• Pipelining

• Didn't work out

$ curl -v http://localhost:8080
* Rebuilt URL to: http://localhost:8080/
* Trying ::1...
* TCP_NODELAY set
* Connected to localhost (::1) port 8080 (#0)
> GET / HTTP/1.1
> Host: localhost:8080
> User-Agent: curl/7.54.0
> Accept: */*
>
< HTTP/1.1 200 OK
< Content-Type: text/plain
< Server: Aleph/0.4.7
< Connection: Keep-Alive
< Date: Sun, 08 Jul 2018 20:46:32 GMT
< content-length: 18
<
hello, world

!

* Connection #0 to host localhost left intact

WebSocket

WebSocket
• Full-duplex communication

• RFC 6455 "The WebSocket Protocol"

• Handshaking using HTTP Upgrade header (compatibility)

• Framing (text, binary, ping/pong, close, continuation)

https://tools.ietf.org/html/rfc6455

WebSocket Upgrade
$ curl -v -H "Upgrade: websocket" \
 -H "Connection: upgrade" \
 -H "Sec-WebSocket-Key: x3JJHMbDL1EzLkh9GBhXDw==" \
 -H "Sec-WebSocket-Protocol: chat" \
 -H "Sec-WebSocket-Version: 13" \
 http://echo.websocket.org
* Rebuilt URL to: http://echo.websocket.org/
* Trying 174.129.224.73...
* TCP_NODELAY set
* Connected to echo.websocket.org (174.129.224.73) port 80 (#0)
> GET / HTTP/1.1
> Host: echo.websocket.org
> Upgrade: websocket
> Connection: upgrade
> Sec-WebSocket-Key: x3JJHMbDL1EzLkh9GBhXDw==
> Sec-WebSocket-Protocol: chat
> Sec-WebSocket-Version: 13

WebSocket Upgrade
<
< HTTP/1.1 101 Web Socket Protocol Handshake
< Connection: Upgrade
< Date: Tue, 10 Jul 2018 09:11:33 GMT
< Sec-WebSocket-Accept: HSmrc0sMlYUkAGmm5OPpG2HaGWk=
< Server: Kaazing Gateway
< Upgrade: websocket
<

TLS, ALPN

ALPN
• Application-Layer Protocol Negotiation Extention, RFC 7301

• allows the application layer to negotiate which protocol
should be performed

• replaced NPN (Next Protocol Negotiation Extension)

• emerged from SPDY development

https://tools.ietf.org/html/rfc7301

ALPN
$ curl -v https://github.com/
* Trying 192.30.253.112...
* TCP_NODELAY set
* Connected to github.com (192.30.253.112) port 443 (#0)
* ALPN, offering h2
* ALPN, offering http/1.1
* Cipher selection: ALL:!EXPORT:!EXPORT40:!EXPORT56:!aNULL:!LOW:!RC4:@STRENGTH
* TLSv1.2 (OUT), TLS handshake, Client hello (1):
....
* SSL connection using TLSv1.2 / ECDHE-RSA-AES128-GCM-SHA256
* ALPN, server accepted to use http/1.1
* Server certificate:
....
* SSL certificate verify ok.
> GET / HTTP/1.1
> Host: github.com
> User-Agent: curl/7.54.0
> Accept: */*
>
< HTTP/1.1 200 OK

HTTP/2

HTTP/2: WHY?
• TCP handshake is still slow

• Head-of-line blocking

• Server to initiate the communication

• TCP congestion control with tons of connections

HTTP/2: HOW?
• Binary, compression of HTTP headers (HPACK)

• Pipelining of requests

• Multiplexing over a single TCP connection

• HTTP/2 Server Push

• Settings management flow, priorities

• ALPN, "Upgrade"

HTTP/3

HTTP/3 =
HTTP/2 over QUIC*

W U no TCP?
• Head of line blocking (still

!
)

• Streams are not independent

• 3 different handshakes: TCP, TLS, HTTP

• Better with TLS1.3, but still

!

• TCP relies on IP address

• TCP is "hardcoded" into infrastructure (links, routers, kernel)

QUIC: HOW?
• UDP-based transport

• Handshakes: 0-RTT, 1-RTT, early data

• TLS1.3 encryption

• ConnectionID instead of IP

• Streams

QUIC: UDP???
• User-space reliability:

• re-transmissions, congesion, pacing

• faster improvements/experiments

• error prone?

• Supported everywhere (heh DNS)

• Kernels are mot optimized

QUIC: Streams
• Bi- or uni- directional

• Initiated by any party

• Independent not only logically!

HTTP/3: HOW?
• Application level protocols

• H3

• QPACK instead of HPACK

• Upgrade: Alt-Svc

Thanks!
q&a please

