
Challenge to
Advanced API
Architecture in Go
Seiji Takahashi (@__timakin__) / Gunosy Inc.
September 29th, 2017
golang.tokyo#9

About me
• Seiji Takahashi
• Github: timakin / Twitter: @__timakin__
• Gunosy Inc. Business Development Team

• Go / Swift
• Just a little bit contributed to Go.

Preface

• Finding the sample projects of API server, based on
maintainable and feature-rich Go code is so hard.

• So I’ve tried to write an operable API server with
plain and standard packages like  
net/http on myself.

• This is just the result of my best-effort challenge,
and not the collective opinion of Go community.

Agenda

• General problems when you write API server
in Go.

• Advanced API architecture in Go, 
which is adaptable for your production
environment.

• The introductions of simple & practical  
packages you can use in your team tomorrow.

How do you write API in 　　

　　？

How do you write API in Go?

• Use Frameworks?

How do you write API in Go?

• Use Frameworks?
• echo / gin / goji / goa

How do you write API in Go?

• Use Frameworks?
• echo / gin / goji / goa
• net/http

How do you write API in Go?

• Use Frameworks?
• echo / gin / goji / goa
• net/http

• Use ORMs?

How do you write API in Go?

• Use Frameworks?
• echo / gin / goji / goa
• net/http

• Use ORMs?
• gorm / xorm / gorp / dbr

How do you write API in Go?

• Use Frameworks?
• echo / gin / goji / goa
• net/http

• Use ORMs?
• gorm / xorm / gorp / dbr
• database/sql

How do you write API in Go?

• Use Frameworks?
• echo / gin / goji / goa
• net/http

• Use ORMs?
• gorm / xorm / gorp / dbr
• database/sql

• Which platform?

How do you write API in Go?

• Use Frameworks?
• echo / gin / goji / goa
• net/http

• Use ORMs?
• gorm / xorm / gorp / dbr
• database/sql

• Which platform?
• AWS / GCP

General problems when you
write API server in Go
• It’s easy to encounter circular import.

General problems when you
write API server in Go
• It’s easy to encounter circular import.
• context.Context handling

General problems when you
write API server in Go
• It’s easy to encounter circular import.
• context.Context handling
• error handling

General problems when you
write API server in Go
• It’s easy to encounter circular import.
• context.Context handling
• error handling
• Passing middleware objects without

context.Context pollution

General problems when you
write API server in Go
• It’s easy to encounter circular import.
• context.Context handling
• error handling
• Passing middleware objects without

context.Context pollution
• Mature Go hackers say “your shouldn’t use a

framework. Just use net/http.”, however, it
sounds there are too much stuff to do.

Any good sample?

Inspirations from goddd
• marcusolsson/goddd

https://github.com/marcusolsson/goddd

Inspirations from goddd
• marcusolsson/goddd
• Well-capsuled repository with Interface

https://github.com/marcusolsson/goddd

Inspirations from goddd
• marcusolsson/goddd
• Well-capsuled repository with Interface
• encoder / decoder for req / res payload.

https://github.com/marcusolsson/goddd

Inspirations from goddd
• marcusolsson/goddd
• Well-capsuled repository with Interface
• encoder / decoder for req / res payload.
• DDD-based architecture enables you to

easily avoid a circular import.

https://github.com/marcusolsson/goddd

How to write API inspired
by goddd with  

plain packages?

Background
• I wrote the sample project: “govod”.

• Sorry, it’s a closed project because it includes some secrets.ʕ>ϖ<ʔ

• Go video on demand API.
• Deploy to Google App Engine
• Features (≒ domains)

• Authentication
• Streaming

ex) /api/videos
with paging interface

Directory tree

Isolate main.go to app directory with  
app.yaml (GAE config) to  
avoid the go-app-builder error.

Directory tree

`domain` and `repository` are main
directories that have the business
logics and data accessors.
`middleware` has the http.Handler
implementations.
 

Inside of domain
- Payload en/decoder
- Error types
- DI object
- Business Logic
- Interface of Repository
- Routing
- Paging token parset
- etc…

Initializes the router with `gorilla/mux`

Combine middlewares for the simple
declaration of http.Handler with `justinas/alice`.

You can get stats with kicking the endpoint  
“/api/stats” (`fukata/golang-stats-api-handler`)

Initialize repository, service (business logic),
and dependency injector for HTTP Handler.

Declare the dependency injected to the custom handler.
(If it’s not GAE `Dependency` may have `Logger`, or other
middlewares…)
Handler with DI enables you to handle middleware  
without setting them in context.Context.
 

Registration of the routings with CustomHandler and DI object.

Request handler with payload decoder/encoder.

Decoder contains the validator.
 (`go-playground/validator.v9`)

Response payload will be wrapped  
with `unrolled/render`.

It may results to return the error object
given a detail context with `pkg/errors`

Paging token parser which returns
pager cursor required by Datastore.

Call StreamingService with context and paging
opts, and if it succeeded, return the encoded
payload.

GetVideoCollection will return
1. videos
2. JWT which contains a pager cursor.
3. error
JWT is generated by using `dgrijalva/jwt-go`

Access to data storage, with repository  
which implements GetVideos.

Repository is an Interface.
It hides which data adapter you depend on.
This means you can define MockRepository
and replace to them in test code.

Access to Datastore on Google Cloud Platform.
(with `mjibson/goon`)
You can switch the adapter to the clients of
MySQL, Postgres, or in-memory database etc…

Conclusion
• DDD-like architecture is good for Go API

development. You can cleverly escape from
hell of circular imports.

• Repository Interface makes the way to
access data pluggable.

• In combination with some packages,  
net/http is surely enough to implement API
server. (But there are few samples so it looks
hard at first.)

Thanks!
• Questions? Come talk to me or  

contact to the following accounts!
• @__timakin__
• timaki.st@gmail.com

mailto:timaki.st@gmail.com

