Image réciproque
En mathématiques, l'image réciproque — ou la préimage — d'une partie B d'un ensemble Y par une application f : X → Y est le sous-ensemble de X constitué des éléments dont l'image par f appartient à B : . Elle est donc caractérisée par :
Exemples
[modifier | modifier le code]- L'image réciproque d'un singleton par une fonction f est l'ensemble des antécédents de y par f.
- Considérons l'application f : {1, 2, 3} → {a, b, c, d} définie par f(1) = a, f(2) = c, f(3) = d. L'image réciproque de {a, b} par f est f−1({a, b}) = {1}.
L'application « image réciproque »
[modifier | modifier le code]Avec cette définition, f−1 est l'application « image réciproque (par f) », dont l'ensemble de définition est l'ensemble des parties de Y et dont l'ensemble d'arrivée est l'ensemble des parties de X.
Mise en garde : lorsque f est une bijection, il ne faut pas confondre cette application sur les parties avec la bijection réciproque de f, également notée f−1, de Y dans X. L'image réciproque par f s'identifie avec l'image directe par cette bijection réciproque f−1. Pour éviter toute confusion, Birkhoff et Mac Lane[1] parlent d'une « application d'ensembles » qu'ils notent f* au lieu de f−1.
Propriétés élémentaires
[modifier | modifier le code]- Pour toutes parties et de :
- ;
- ;
- .
- Pour toute partie de , [2].
- En particulier, si est surjective alors .
- On peut même prouver[2] que est surjective si et seulement si pour toute partie de on a .
- En particulier, si est surjective alors .
- Pour toute partie de , .
- L'inclusion dans l'autre sens est fausse en général si n'est pas injective.
- On peut même prouver que est injective si et seulement si pour toute partie de on a .
- Pour toute famille de parties de :
- ;
- .
- Si l'on considère de plus une application , alors l'image réciproque d'une partie de par la composée est :
- [1].
Notes et références
[modifier | modifier le code]- Saunders Mac Lane et Garrett Birkhoff, Algèbre [détail des éditions], vol. 1, p. 8; ex 3 p. 9
- Pour une démonstration, voir par exemple le .
Articles connexes
[modifier | modifier le code]- Relation binaire réciproque
- L'opération d'image réciproque en géométrie différentielle, aussi appelée « tiré en arrière » ou « pullback ».