
第第第第 13 回計測自動制御学会制御回計測自動制御学会制御回計測自動制御学会制御回計測自動制御学会制御部門大会部門大会部門大会部門大会 (2013)

Development of a driving simulator for vehicle control and

ITS research

Yoann PENCREACH*1

*1 Forum 8 Co., Ltd. (www.forum8.co.jp) VR Development Group

Gakuen Kibanadai-nishi 2-1-1, Miyazaki-ken Miyazaki City, 889-2155 Japan

Abstract: In this paper, we discuss how we addressed some of the synchronization issues in HILS

system and why solving synchronization can impact on the latency, then how with a simple

technique we could improve both latency and synchronization. The studied driving simulator uses a

real time vehicle dynamics module connected to our virtual reality application, where the simulation

of the environment is FPS dependent.

Key Words: Driving Simulator, ITS, Vehicle control

1 Introduction on testing ECUs of a

vehicle in a virtual environment

Virtual reality is a tool widely used for

simulation where the interaction with an actual

person is necessary. It is used for instance in

systems for training on emergency situation,

flight and drive simulators are also well known

as efficient means to train or test pilots and

drivers. But virtual reality is also used for the

reverse purpose: test an actual part of a system

under real usage conditions. A good example is

given by the ECU or Electronic Control Units;

as their complexity increases, the use of

simulation where the actual ECU hardware is

integrated (HILS) becomes necessary.

Since the 80s the number of ECU has

incredibly increased in our vehicles in order to

improve their efficiency, safety and comfort.

Many different types of ECU exit such as the

Powertrain Control Module (PCM), Brake

Control Module (BCM), Transmission Control

Module (TCM), Body Control Module (BCM),

Suspension Control Module (SCM), etc… Each

of them controlling a specific part of the

vehicle according to information acquired

through various types of sensors. The number

of ECU on a vehicle can exceed 50 nowadays,

and the heavy research effort in vehicle makes

complexity of the overall system increase

rapidly. Programming an ECU has becomes a

great challenge for the engineers increasing the

need in simulation, validation and experiments.

第 13 回制御部門大会（2013 年 3 月 5 日～ 8 日・福岡） © 2013 SICESY0002/13/0000-0545

In 2000 we (Forum 8 Co., Ltd.) released the

first version of UC-win/Road
*1

 a commercial

virtual reality software application. At that time

we already had a long expertise in development

of software for civil engineers and

UC-win/Road started as a tool for consensus

and review of road and city planning and

designs. UC-win/Road included from its first

version an extensive set of tools to model in

three dimensions the infrastructures of the

roads. From that point the product was

extended to allow seamless simulation of the

traffic and later driving simulation in the 3D

virtual environment.

Fig. 1: Example of driving simulator using UC-win/Road.

Since then we participated at many projects

involving technologies like HILS and biometry

instruments for the driver. As many equipments

and modules have to operate together latency

and synchronization issues become very

important for the comfort of the user but also to

allow the hardware to work correctly

in the simulation.

As shown in Figure 2 the ECU

outputs control signals directed to

other parts of the vehicle while the

input can come from various sources

of information. The most common

and the first king of information

used in ECU is information coming from other

parts of the vehicle itself. But the information

can be also about the driver, the road condition,

surrounding vehicles or pedestrians. More

recently with the increasing interest in

Intelligent Transport Systems (ITS) the use of

Driver

ECU Vehicle

Road infrastructure

Other vehicles

Pedestrians

Fig. 2: An ECU and its environment

*1
 UC-win/Road official web site: http://vr.forum8.co.jp/

real-time data transmitted from other vehicles,

pedestrians or infrastructure equipments has

become also very important.

In order to test and develop an ECU in a

simulation environment it is essential to

reproduce all the input signals that the ECU

will receive in a real environment and also be

able to execute many different scenarios that an

ECU may encounter in a real driving situation.

For that the simulator must be able to simulate

the data coming from the vehicle itself, from

the driver and the traffic and other aspect of the

environment. A standard set of tools would be a

software module for the vehicle physical

simulation, a virtual reality system connected to

a driving simulator so a real person can drive

the simulated vehicle and a traffic simulation

engine. Each of them should be highly

customizable to allow an easy integration of

other subsystems needed for the research.

If we consider the entire simulator system, the

ECU is not the only part that requires a

simulation for its input but the driver also needs

his stimuli in order to carry out the experiment.

This aspect of the system will not be discussed

in detail in this document but is also a subject

of great interest covering may fields like traffic

simulation, artificial intelligence and behavior

modeling, visualization, sound generation, 3D

model generation, force feedback and motion

cueing etc…

A typical driving simulator system using

UC-win/Road and integrated with an ECU can

be represented as shown in Figure 3.

Fig. 3: UC-win/Road in a HILS environment.

This kind of configuration is also called a

Hardware In the Loop Simulation (HILS)

because a real ECU (hardware) is connected to

the simulator and plays its role in the

simulation. The main elements are as follow:

(1) ECU connected to the Vehicle Dynamic

Simulation (VDS). Usually all the data the

ECU needs are sent from the VDS and the

ECU can also control back the vehicle

simulated in the VDS.

(2) The Simulator cabin and the driver whose

role is to control the VDS.

(3) The traffic simulator has two roles: show a

realistic traffic condition to the driver and

send real time information to the ECU via

UC-win/Road VR

Driver

ECU

Vehicle dynamics simulation

Simulator Cabin and

Projection, sound system Visual and sound generation

Traffic, environment simulation

Scenario generator

Road surface information

the VDS.

(4) The road condition including mainly the

road surface geometry and friction

coefficient used to feed the VDS with the

parameters needed in the vehicle

simulation. This can be done offline before

starting the simulation or in real time for

changing conditions. This information is

also used for visualization and is shared

between the virtual reality engine and the

VDS.

(5) Virtual reality (VR) engine: its role is to

provide as much as possible a convicting

experience to the driver in terms of visual

and audio queue.

2 How to deal with a variable frame

rate in a HILS environment?

2.1 Context

In the test environment the ECU must receive

the same data, at the same rate as in a real

environment. The VDS module is responsible

for sending the data of the simulated vehicle in

real time to the ECU. In order to ensure a real

time simulation and data transfer at a constant

rate, a real time operating system (RT OS) is

used.

UC-win/Road is connected to the VDS and runs

on a standard Microsoft
®

 Windows
®

 operating

system. In this environment a constant data

transfer cannot be ensured mainly for two

reasons:

1. The operating system is not designed to

provide a strictly constant timer and also

cannot ensure the availability of the

resources at a given time for an application.

2. UC-win/Road provides tools for the user to

build his driving environment. Therefore

the application allows the user to create 3D

environment that may not be able to sustain

a constant image refresh rate also called

frame per second (FPS).

Regarding the real time issue, we could

improve the system with techniques such as

using material interruption and virtualization to

almost force a constant simulation time step.

However, because the amount of data to be

handled by the visualization is variable and

because we want to keep that flexibility in our

application the FPS is potentially variable.

In any case the result of the VDS must be

somehow synchronized with the actual frame

displayed on the screen. We will explain later

what would happen without synchronization. In

this paper we will study the case where the

traffic simulation is calculated in UC-win/Road

at a variable time step and the driver’s vehicle

simulation handled by the VDS at a constant

time step.

2.2 Description of our solution

The traffic and environment simulation in

UC-win/Road are calculated to follow the

actual measured FPS as shown on Figure 4. The

simulation runs in a separate thread from the

drawing process to improve the overall

performances of the system. However before

starting the drawing process of a frame both

threads are synchronized. The drawing thread

waits for the calculation of the current step of

the simulation to be completed. As the time

interval between steps is not constant, the

duration of the time interval to be simulated at

a particular step can only be estimated. In

UC-win/Road the time interval of one step of

the simulation is chosen equal to the actual time

interval measured between the two previous

frames. This ensures the total time of the

simulation is equal to the actual time of the

computer.

Fig. 4: Simulation and drawing synchronization in UC-win/Road.

This creates a discrepancy as the actual time

interval between the current frame (Fn) and the

previous frame (Fn-1) may not be equal to the

interval between the two previous frames (Fn-1

and Fn-2). Between two images separated in

time of [tn - tn-1] seconds the simulation

progressed of [tn-1 - tn-2] seconds. These two

durations can be different because of the

varying FPS and this difference could induce a

wrong instant speed perception for the user. It

would be interesting to study what levels of

variation are acceptable for the user; however

we will consider for now that except for large

fluctuation of the FPS this issue can be ignored.

The next synchronization issue we studied is

between the VDS and the VR application.

As shown in Figure 5, if we consider a simple

system where the latest information coming

from the VDS is integrated in the displayed

frame without processing, we realize that the

perceived time of the traffic and environment is

not the same as the one of the VDS. Although a

constant difference may create the impression

the traffic does not respond in a realistic

reaction time to the actions of the user, this

difference in time is also fluctuating as the FPS

does. The “wrong” reaction time of the traffic is

actually very difficult for the user to perceive

when the difference is small and can be

adjusted in the traffic algorithm according to

the average difference or delay between both

simulations. But the fluctuation creates a real

discomfort for the driver and prevents from

Calc(dtn+2)

Drawing(tn+2)

Drawing(tn+1)

Calc(dtn+1)

Drawing(tn)

Calc(dtn)

Fn Fn+1 Fn+2 Fn+3 Frame number

tn tn+1 tn+2 tn+3 Time

Calculation thread

Drawing thread

dtn+1 dtn+2 dtn+3

S
y
n

ch
ron

iza
tion

S
y
n

ch
ron

iza
tion

S
y
n

ch
ron

iza
tion

carrying out a driving simulation when a

realistic traffic situation is important. Because

of this variation, the relative positions between

the user’s vehicle and other moving objects

become unstable. Concretely, the user sees

other vehicles as if they were capable of

constantly doing sudden decelerations and

accelerations.

Fig. 5: Basic synchronization issue with HILS

To address that issue we had to improve the

estimation method for the time interval in the

traffic simulation module. We also

implemented a simple buffer used when

synchronizing the three processes: 1. traffic and

environment simulation, 2. drawing thread and

3. VDS. The first improved mechanism is

represented in Figure 6.

Fig. 6: VDS and visual synchronization at a variable FPS.

Actual drawing time

Projected drawing time

11 x VDS loop time

Ready to draw

Projected drawing time

14 x VDS loop time

Data actually used

for drawing

Wait

Data buffering

Introduced latency

The VR system and

HILS are synchronized

but an undesired

latency is introduced

Case A Case B
VDS

VR System

Actual drawing time

Projected drawing time
L

a
test V

D
S

 d
a
ta

Actual drawing time

Projected drawing time

L
a
test V

D
S

 d
a
ta

Time difference between traffic and VDS
VDS

VR System

However because we cannot control the

combined time taken for the traffic simulation

and drawing processes, it may differ and be

longer or shorter than the projected interval. Yet

the calculation is finished and the data from the

VDS must be used to represent the user’s

vehicle in the virtual environment.

In Case A, if the data for the time T has been

sent already from the VDS to the VR system

and is stored in the buffer, the buffer data is

used and older data is deleted from the buffer.

Case A occurs when the FPS drops.

In Case B, the drawing thread waits for the

VDS to send the data corresponding to the time

T. Case B occurs when the FPS increases.

We understand now why the time interval is

rounded to the closest multiple of the VDS loop

time. If not, the VDS may never be able to send

the data for the time T, as T is never simulated.

This first improvement ensures that the data of

the user’s vehicle and traffic simulation are

perfectly synchronized. However we see that in

Case A, some undesired latency is introduced in

the visual system as we do not use the most

recent data coming from the VDS. As long as

Case B does not occur the latency will not be

reduced to its minimum value.

Typically, after a drop in FPS an additional

latency is artificially added for the needs of the

synchronization and as long as the FPS is not

restored to its original value, the latency stays

in the system.

This issue can be simply improved by adding

the introduced latency time in the next time

interval of the traffic calculation.

In Case B, it is the reverse case, there is no

impact on the latency but as we force the visual

system to wait for future VDS data, the system

runs at lower FPS than its maximum capacity.

To resynchronize the systems, the wait time is

subtracted from the next time interval of the

traffic calculation.

Figure 7 shows the final improved mechanism

after a drop in FPS.

Fig. 7: Latency compensation in VDS and visual synchronization.

Projected drawing time Projected drawing according

to last FPS + added latency

Actual drawing time Actual drawing time

Data actually used for drawing

Data buffering

Introduced latency Latency compensation

VDS

VR System

3 Conclusions

As the complexity of our vehicle increases, the need of test and experiment increases. To carry out

such experiments safely but also as close as possible to a real situation, synchronization and latency

issues have to be taken in account in the design of virtual reality applications. In driving simulators

various synchronization issues exist, such as the synchronization of data collection from several

independent measurement equipment, audio-visual synchronization, motion cues and visual cues

etc… This time we saw that while allowing a maximum flexibility for the user about the content of

his experiment, it is possible to implement a robust connection between a real time system and

visualization at a variable frame rate.

As future development we plan to extend our system to enable low latency synchronization between

multiple driving simulators. We believe that it will be an efficient tool for studies on human factors

where various driving situations needs to be generated quickly and easily by the researchers and

engineers.

References

(1) Forum 8 Co.,Ltd. “UC-win/Road reference manual”

ftp://ftp.forum8.co.jp/forum8lib/ucwin/road/UCwinRoadV80000ManualJpn.exe

(2) Michael Meehan (Stanford University), Sharif Razzaque, Frederick P. Brooks, Jr. Mary C.

Whitton (UNC-Chapel Hill) “Effect of Latency on Presence in Stressful Virtual Environments”

(3) Rohit Goyal (Ohio State University) “Simulation Experiments with Guaranteed Frame Rate for

TCP/IP Traffic” (1997)

(4) Ing. Petr Bouchner (Czech Technical University) “Driving Simulators for HMUI Research”

(5) Chris Schwarz, Yefei He, Andrew Veit (National Advanced Driving Simulator, Iowa)

[N11-001] “Eye Tracking in a Cots PC-Based Driving Simulator: Implementation and

Applications” (Image 2011 Conference)

(6) Yefei He (National Advanced Driving Simulator, Iowa) [N06-025] “NADS MiniSim Driving

Simulator” (Technical Report 2006)

