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Abstract 

Two correspondences raised concerns or comments about our analyses regard-
ing exaggerated false positives found by differential expression (DE) methods. Here, 
we discuss the points they raise and explain why we agree or disagree with these 
points. We add new analysis to confirm that the Wilcoxon rank-sum test remains 
the most robust method compared to the other five DE methods (DESeq2, edgeR, 
limma-voom, dearseq, and NOISeq) in two-condition DE analyses after considering 
normalization and winsorization, the data preprocessing steps discussed in the two 
correspondences.

Introduction
As correspondences to our published study [1], Hejblum et al. [2] and Yang et al. [3] have 
raised issues or comments about our analyses. Here, we respond to the two correspond-
ences and show that they do not challenge the major finding of our study—DESeq2 and 
edgeR have exaggerated false discoveries when analyzing human population samples 
(Fig. 1 in [1])—which is, in fact, exempt from the issues raised in Hejblum et al. [2].

There are two major points in Hejblum et al. [2]. First, in the power comparison results 
(Fig. 2  in our published study [1]), the semi-synthetic data did not have all genes per-
muted as true non-DEGs because we kept the unpermuted genes as true DEGs for power 
calculation. Hejblum et  al. [2] pointed out that normalization on such semi-synthetic 
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data would distort some of the true non-DEGs as false-positive DEGs. Because of this, 
Hejblum et  al. [2] found that our results biasedly disfavor the five differential expres-
sion (DE) methods (DESeq2, edgeR, limma-voom, dearseq, and NOISeq) except for 
the Wilcoxon rank-sum test because we applied the five DE methods with their built-
in normalization, but we used the Wilcoxon rank-sum test without normalization. Sec-
ond, Hejblum et al. [2] claimed that dearseq outperformed the other five DE methods. 
Regarding the first point, we would like to thank Hejblum et al. for pointing out the bias 
caused by normalization on the semi-synthetic data, an issue we unintentionally omitted 
because we treated each DE method except for the Wilcoxon rank-sum test as a whole 
pipeline. Accordingly, here, we re-performed the power comparison analysis under the 
“no normalization” scheme proposed by Hejblum et al. [2]. Regarding the second point, 
we have a different conclusion based on our new analysis results. We observed that the 
Wilcoxon rank-sum test remains the most robust method compared to the other five DE 
methods in terms of false discovery rate (FDR) control and power performance.

The central point in Yang et al. [3] is that winsorization, a procedure to truncate each 
gene’s large outlier values beyond a certain empirical percentile (e.g., the 95th percen-
tile) to the percentile, can fix the exaggerated false-positive issue of DESeq2 and edgeR. 
Yang et  al. concluded that outliers caused false-positive exaggeration, and winsoriza-
tion provided an easy fix. However, Yang et al. conducted an analysis only based on per-
muted data without true DEGs, and they did not consider semi-synthetic data where 
true DEGs existed for power evaluation. In this response, we used a model-based strat-
egy to generate semi-synthetic no-outlier RNA-seq data under the negative binomial 
(NB) model assumption of DESeq2 and edgeR, with true DEGs and non-DEGs. Then, we 
compared the Wilcoxon rank-sum test with DESeq2 and edgeR under various thresholds 
of winsorization. Our results show that winsorization cannot fix the inflated FDR issue 
of DESeq2 and edgeR on our model-based semi-synthetic data, and that the Wilcoxon 
rank-sum test still performs better in FDR control and power performance. Besides, set-
ting the winsorization threshold is a challenging question in practice. While Yang et al. 
proposed to set the threshold by controlling the false discoveries made from permuted 
data and maximizing the discoveries made from real data, this strategy potentially suf-
fers the double-dipping issue (testing a data-driven null hypothesis using the same data) 
that may hurdle the validity of statistical tests.

In response to the two correspondences, here we added new real data-based simula-
tion analyses to compare the six DE methods. Consistent with our published study [1], 
we used real RNA-seq data from two conditions to generate semi-synthetic RNA-seq 
data, which contain ground truths of DEGs and non-DEGs (referred to as true DEGs 
and true non-DEGs, respectively), for benchmarking the FDR and power of each DE 
method. To make our benchmark more comprehensive, we employed two simulation 
strategies to generate semi-synthetic data, including the permutation-based strategy we 
had used in our published study [1] and a newly added model-based strategy, which (1) 
satisfies the NB model assumption used in DESeq2 and edgeR and (2) ensures that the 
semi-synthetic data contain no outliers.
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Two strategies for generating semi‑synthetic RNA‑seq data from real RNA‑seq data

Knowledge of true DEGs and non-DEGs is necessary for evaluating the FDR and power 
of a DE method. The permuted data that led to the major finding of our published study 
(Fig. 1 in [1]) only contained true non-DEGs and thus could not be used for power eval-
uation. Hence, in our published study [1], we also generated semi-synthetic data con-
taining both true DEGs and true non-DEGs. Before the semi-synthetic data generation, 
we defined the true DEGs as those identified by all six DE methods (DESeq2, edgeR, 
limma-voom, dearseq, NOISeq, and the Wilcoxon rank-sum test) from the real data at 
a highly stringent FDR threshold (0.0001%), and we defined the true non-DEGs as the 
rest of genes. Then, to generate semi-synthetic data from the real data (Fig. 1a, top-mid-
dle), we preserved the true DEGs’ unnormalized read counts in the real data, and we 
independently permuted each true non-DEG’s unnormalized read counts across the real 
samples. Here, we refer to this previously used generation strategy as the permutation-
based strategy (Fig. 1a, top-left, later referred to as scheme 2), which has the advantage 
of preserving the read count values in the real data (Fig. 1a, top-left vs. top-middle).

Fig. 1 Illustration of a the two strategies for generating semi-synthetic data from real data and b the 
generation of permuted data used in Fig. 1 of our published study [1]. a Permutation-based strategy and 
model-based strategy for generating semi-synthetic data. There are three schemes for the permutation-based 
strategy: scheme 1—“permutation first” generates semi-synthetic data by permuting the real count data, 
followed by normalization and then DE analysis (bottom-left); scheme 2—“no normalization” generates 
semi-synthetic data by permuting the real count data, followed by DE analysis directly, without normalization 
(top-left); scheme 3—“normalization first” generates semi-synthetic data by normalizing the real data 
(bottom-middle), which are no longer counts, followed by permutation and then DE analysis (bottom-right). 
In the model-based strategy (top-right), we fit a multi-gene NB distribution to the real samples using the 
simulator scDesign3 [4]. For each true differentially expressed gene (DEG) we fit a NB distribution using the 
samples under each condition; for each true non-DEG, we fit one NB distribution by pooling the samples 
from both conditions; then, we generate semi-synthetic data by sampling from the fitted multi-gene NB 
distribution. b For the analysis in Fig. 1 of our published study [1], all genes are permuted and become true 
non-DEGs, followed by normalization and then DE analysis
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An alternative strategy to generate semi-synthetic data is the model-based strat-
egy (Fig. 1a, top-right), which guarantees that the synthetic data satisfy the NB model 
assumption required by edgeR and DESeq. This model-based strategy, which we imple-
mented in this response to Yang et  al. [3], enabled us to evaluate DESeq2 and edgeR, 
with or without the winsorization step, under an ideal scenario that the two meth-
ods’ model assumption holds. Hence, we can better dissect the reason behind the two 
methods’ inflated FDR issue. Unlike the permutation-based strategy, this model-based 
strategy does not preserve the read count values in the real data (Fig. 1a, top-right vs. 
top-middle). In detail, in the model-based strategy, we first fit a multi-gene distribu-
tion (by considering every RNA-seq sample as a draw from the distribution) to the real 
data (Fig. 1a, top-left) using the model-based simulator scDesign3 [4], which can mimic 
real RNA-seq data by preserving gene–gene rank correlations and allow us to specify 
each gene’s distribution. For each true DEG, we specified a per-condition NB distribu-
tion fitted to the gene’s real data counts under each condition; for each true non-DEG, 
we specified one NB distribution fitted by pooling the gene’s real data counts from both 
conditions. Then, we generated semi-synthetic data by sampling from the fitted multi-
gene distribution.

Response to Hejblum et al. [2]

Key messages in Hejblum et al. [2]

The correspondence by Hejblum et al. [2] has two major points. First, they pointed out 
that normalization used on the permutation-based semi-synthetic data led to false-pos-
itive DEGs, making the FDR comparison results biasedly disfavor the five DE methods 
(DESeq2, edgeR, limma-voom, dearseq, and NOISeq) that include built-in normaliza-
tion. The affected results include Fig. 2 and Figures S20-S30 in our published study [1]. 
Second, dearseq outperforms the Wilcoxon rank-sum test under scheme 3 and other-
wise offers competitive performance on par with the other methods.

Regarding the first point, more specifically, when we ran the Wilcoxon rank-sum 
test on permutation-based semi-synthetic data to verify the FDR control, we did not 
include a normalization step; on the other hand, when we ran the other five DE methods 
(DESeq2, edgeR, limma-voom, dearseq, and NOISeq), we had used each method’s built-
in normalization. Hence, our comparison results (Fig. 2 and Figures S20-S30 in [1]) did 
not put the Wilcoxon rank-sum test on the same ground as the other five DE methods in 
terms of the use of normalization. Hejblum et al. showed that when the Wilcoxon rank-
sum test was used after they applied normalization to the semi-synthetic data, it also 
had an inflated FDR issue as the other five DE methods.

To explain their first point, Hejblum et  al. [2] summarized three schemes for using 
permutation-based semi-synthetic data: (1) “permutation first,” (2) “no normalization,” 
and (3) “normalization first.” Specifically, scheme 1 “permutation first” means that semi-
synthetic data is generated by the permutation-based strategy from real count data, 
followed by normalization and then DE analysis (Fig.  1a, bottom-left); scheme  2 “no 
normalization” means that semi-synthetic data is generated by the permutation-based 
strategy from real count data, followed by DE analysis directly, without normalization 
(Fig.  1a, top-left); scheme  3 “normalization first” means that semi-synthetic data is 
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generated by the permutation-based strategy from normalized real data, which are no 
longer counts, followed by DE analysis directly (Fig. 1a, bottom-right).

Our previous analysis had used scheme 1 for DESeq2, edgeR, limma-voom, NOISeq, 
and dearseq, but scheme 2 for the Wilcoxon rank-sum test (Fig. 2 and Figures S20-S30 
in [1]). Unlike schemes 1 and 2, scheme 3 requires a different way of generating semi-
synthetic data (Table 1).

Regarding the second point raised by Hejblum et al. [2], they re-compared the six DE meth-
ods under each of the three schemes and concluded that dearseq [5] outperformed the other 
five methods, including the Wilcoxon rank-sum test. Our conclusion is different. In the sec-
tion titled “Our new analysis confirms that the Wilcoxon rank-sum test remains the most 
robust method under the “no normalization” scheme 2,” we added a new analysis to compare 
the six DE methods under scheme 2, which we think is the only valid, feasible scheme among 
the three schemes (explained in the following sections: “We agree with Hejblum et al. that no 
normalization should be performed if only a portion of genes is permuted to become true 
non-DEGs,” “Our new simulation analysis confirms that normalization on samples without 
batch effects and containing true DEGs would inflate false discoveries,” “Our major findings 
in [1] that DESeq2 and edgeR have exaggerated false discoveries still hold,” “The “normaliza-
tion first” scheme 3 alters DE method implementation and is thus not-so-realistic,” and “Our 
rationale of recommending the “no normalization” scheme 2”); our result suggests that the 
Wilcoxon rank-sum test remains the most robust method among the six DE methods. Addi-
tionally, we observed that the Wilcoxon rank-sum test is a robust, top performer in the analy-
sis of Hejblum et al. under their recommended scheme 3 (the section titled “The analysis of 
Hejblum et al. [2] also suggests that the Wilcoxon rank-sum test is a top performer under 
scheme 3”), although we regard scheme 3 as a not-so-feasible scheme because it needs to 
alter DE method implementation by adding permutation after the built-in normalization.

We agree with Hejblum et al. that no normalization should be performed if only a portion of 

genes is permuted to become true non‑DEGs

We agree with the first point made by Hejblum et al. that our previous simulation analy-
sis in our published study [1] was unintentionally biased, where the Wilcoxon rank-sum 
test was run under scheme 2, but the other five DE methods including dearseq were run 
as whole pipelines (including built-in normalization) under scheme 1.

Hejblum et al. pointed out that post-permutation normalization, i.e., scheme 1, would 
distort each true non-DEG’s expression levels under the two conditions (because true 
DEGs’ different expression counts in different samples would make the samples have 
different library sizes) and would thus cause some true non-DEGs to be identified as 
false positives. We concur on this point. In fact, we also noticed that scheme 1 would 
inflate the FDR, and this is why we used scheme 2 for the Wilcoxon rank-sum test, which 
is not an RNA-seq-specific software package and thus does not include a built-in nor-
malization step. However, the other five RNA-seq-specific DE methods include built-
in normalization, and users would likely use them as whole pipelines by not removing 
the built-in normalization step. While these methods are used as black-box pipelines by 
most users, it is crucial to be conscientious with their built-in normalization steps when 
we evaluate the FDR and power of these methods using semi-synthetic data with ground 
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truths, which can be distorted by the normalization steps within these pipelines. Hence, 
while we agree that running these methods as pipelines, i.e., under scheme 1, was unfair 
for evaluating the FDR control of their statistical tests, we believe that our previous 
results (Fig. 2 and Figures S20-S30 in [1]), in conjunction with Hejblum et al.’s results, are 
meaningful for showing the risks of using bioinformatics tools as black-box pipelines.

While unfair, our previous analysis was not intentionally biased against dearseq. 
The reason was that the dearseq R package we used in our published study [1] (v1.6.1, 
Bioconductor date October 26, 2021) did not support the use of our simulated count 
data without normalization. Hence, we were unable to assess dearseq under scheme 2 
like the Wilcoxon rank-sum test. The detail is in Additional file 1, an R Markdown file 
recording how dearseq was used in our published study. Note that the dearseq R pack-
age was updated after our publication [1] to allow scheme  2 (see Table  1). Hence, we 
used dearseq v1.8.1 (the most up-to-date version at the time of our new analysis) in this 
response.

Our new simulation analysis confirms that normalization on samples without batch effects 

and containing true DEGs would inflate false discoveries

In our opinion, the fundamental reason behind the first point raised by Hejblum et al. is 
that no normalization should be performed on samples without batch effects and con-
taining true DEGs, the case for the permutation-based semi-synthetic data, where true 
DEGs and true non-DEGs are defined by assuming no batch effects.

To demonstrate that bias normalization can be introduced on samples without batch 
effects and containing true DEGs, we simulated samples of two conditions, in which 
each true non-DEG has counts from the same NB distribution under both conditions, 
and each true DEG has different NB distributions for the two conditions. On these simu-
lated samples without batch effects, if we first applied the trimmed mean of M-values 
(TMM) normalization [6] and then the Wilcoxon rank-sum test for DEG identification, 
then the actual FDR was 7.9% at a target FDR threshold of 5%. In contrast, if we directly 
applied the Wilcoxon rank-sum test without normalization, then the actual FDR was 
3.5% at the same target FDR threshold of 5%. This result suggests that, in the absence of 
batch effects, normalization would introduce bias and should not be used.

The bias induced by unnecessary normalization is also demonstrated in Fig. 1a. There 
is one true DEG and one true non-DEG in the permutation-based semi-synthetic data 
(Fig.  1a, top-left). However, the non-DEG exhibits an obvious difference in the mean 
expression levels between the two conditions after the normalization, making it likely to 
be identified as a false-positive DEG (Fig. 1a, bottom-left).

In our published study [1], we generated semi-synthetic data using the permutation-
based strategy. For the true DEGs, we fixed their unnormalized read counts as in the 
real data’s two conditions. For the remaining genes as true non-DEGs, we randomly per-
muted each gene’s unnormalized read counts between the real data’s two conditions. 
Given that we did not assume batch effects to exist in the semi-synthetic data when we 
defined true DEGs and true non-DEGs, normalization is unnecessary and would only 
serve to skew the defined ground truth. Hence, we conclude that no normalization 
should be performed on the permutation-based semi-synthetic data (i.e., scheme  2 in 
Table 1).
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Our major findings in [1] that DESeq2 and edgeR have exaggerated false discoveries still hold

It is worth noting that permutation remains a valid sanity check of DE methods (with or 
without built-in normalization) when all genes are permutated. In such permuted data, all 
genes are true non-DEGs, and all samples are exchangeable (Fig. 1b, left). Hence, a nor-
malization procedure, if appropriate, should not introduce biases to exchangeable samples 
and distort the ground truth (Fig. 1b, right). As our major point about exaggerated false 
discoveries (Fig. 1 in our published study [1]) was based on such permuted data, our obser-
vation that DESeq2 and edgeR had exaggerated false discoveries when analyzing human 
population samples remains valid. However, as no true DEGs existed in such permuted 
data, we could only use these data to evaluate the FDR of a DE method, but not the power. 
This motivated us to generate semi-synthetic data that contained both true DEGs and non-
DEGs (see the section titled “Two strategies for generating semi-synthetic RNA-seq data 
from real RNA-seq data”).

The “normalization first” scheme 3 alters DE method implementation and is thus 

not‑so‑realistic

Realizing the issue with scheme 1, Hejblum et al. proposed scheme 3 (Table 1) to generate 
semi-synthetic data in a different, normalization-then-permutation way: first normalizing 
real data within each condition; then generating semi-synthetic data by fixing true DEGs’ 
normalized expression levels in the two conditions and randomly permuting each true non-
DEG’s normalized expression levels between the two conditions. It is true that scheme 3, 
like the “no normalization” scheme 2, does not perform the post-permutation normaliza-
tion, so true non-DEGs’ expression levels would not be distorted and then become false 
positives. However, we argue that scheme 3 would generate semi-synthetic data contain-
ing normalized expression levels that are no longer counts, making many DE methods that 
require count data as input become inapplicable. In fact, Hejblum et al. [2] had to alter each 
DE method by adding a permutation step after the normalization step, making scheme 3 
not only a semi-synthetic data generation scheme but also an altered implementation of DE 
methods.

Our rationale of recommending the “no normalization” scheme 2

Given the fact that scheme 1 causes FDR inflation and scheme 3 must alter DE method 
implementation, our recommendation is the “no normalization” scheme 2. Moreover, there 
are different normalization methods available, and the choice of normalization methods 
remains an open question [7–9]. Using scheme 2 allows us to concentrate on the perfor-
mance of DE methods without the confounding effect of the normalization method choice.

It is important to emphasize that all three schemes apply only to FDR and power evalu-
ation of DE methods using permutation-based semi-synthetic data, not real data analysis. 
For real data, unless analysts are confident about the absence of batch effects, we recom-
mend the use of normalization prior to conducting DE analysis.

Our new analysis confirms that the Wilcoxon rank‑sum test remains the most robust method 

under the “no normalization” scheme 2

Regarding the second major point of Hejblum et  al. [2] that dearseq outperforms the 
Wilcoxon rank-sum test under scheme 3 and otherwise offers competitive performance 
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on par with the other methods, we performed a new analysis for FDR and power evalu-
ation under our recommended "no normalization" scheme  2 for the six DE methods, 
including the updated dearseq (v1.8.1) package that allows this scheme and was released 
after our published study [1]. Our updated results show that the Wilcoxon rank-sum test 
remains the most robust method compared to the other five DE methods (Figs. 2 and 3).

Importantly, dearseq has two versions: dearseq-perm uses a permutation test for 
p-value calculation, and dearseq-asym uses an asymptotic null distribution for p-value 
calculation.

In this response, under scheme 2, we first re-ran the six DE methods on the permuta-
tion-based semi-synthetic data generated in our published study [1] and obtained results 
similar to those in Hejblum et al. [2]. As shown in Figs. 2 and 3, dearseq-perm cannot 
control the FDR. The other version, dearseq-asym, also cannot control the FDR when 
the sample sizes are 20 vs. 20 (Fig. 2), and it controls the FDR only when the sample size 
is large enough (e.g., sample size ~ 40 when the target FDR is 0.1%; Fig. 3). In contrast, 
the Wilcoxon rank-sum test has consistent FDR control across all sample sizes. Figures 2 
and 3 also show that under the same actual FDR, dearseq-perm has the worst power 
among all DE methods, while dearseq-asym has no obvious power advantage over the 
Wilcoxon rank-sum test. Another drawback of dearseq-perm is its long computational 
time. In our benchmark, the average computational time of dearseq-perm under its 
default setting was 3.5 h on one semi-synthetic dataset (with sample sizes 372 and 386); 
in contrast, the Wilcoxon rank-sum test spent only 1.5 min on the same dataset, and 

Fig. 2 Comparison of DE methods on semi-synthetic data generated using the permutation-based strategy 
from GTEx data of heart left ventricle vs. atrial appendage under the data generation scheme 2. The FDR 
control (left panel) and power given the actual FDRs (right panel) under a range of FDR thresholds (i.e., 
claimed FDRs) from 0.001 to 5% for 2 sample sizes: all samples from the 2 conditions (top panel) and 20 
samples per condition (bottom panel)
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dearseq-asym spent 1 min. Based on these results, the conclusion in our published study 
still holds that the Wilcoxon rank-sum test is more robust than dearseq-asym regarding 
the sample size and outperforms dearseq-perm regarding the FDR control consistency 
and the statistical power.

The analysis of Hejblum et al. [2] also suggests that the Wilcoxon rank‑sum test is a top 

performer under scheme 3

Since scheme 3 is not directly applicable to DESeq2 [10], edgeR [11], and limma-voom 
[12], which only accept gene expression read counts as input data, we chose not to 
alter their pipelines and then run them under this scheme. Hence, we used the results 
in Hejblum et  al. [2] to compare the Wilcoxon rank-sum test with dearseq-perm and 
dearseq-asym. Hejblum et al.’s Figs. 1 and 2 showed that dearseq-perm can control the 
FDR but lacks power, and dearseq-asym can control the FDR only when the sample size 
is large enough (at least 80 samples per condition). In contrast, the Wilcoxon rank-sum 
test has consistent FDR control across all sample sizes. Moreover, dearseq-asym has no 
obvious power advantage over the Wilcoxon rank-sum test. Hence, we conclude that the 
Wilcoxon rank-sum test is still a good choice under scheme 3, although we do not rec-
ommend scheme 3 for the reasons stated in the section titled “The “normalization first” 
scheme 3 alters DE method implementation and is thus not-so-realistic.”

In summary, after fixing the normalization bias in our published analysis (Fig.  2  in 
[1]), we claim that our previous conclusion remains: the Wilcoxon rank-sum test is 
the most robust among the six methods. In particular, the Wilcoxon rank-sum test is 

Fig. 3 Comparison of DE methods on semi-synthetic data (with varying sample sizes) generated using 
the permutation-based strategy from GTEx data of heart left ventricle vs. atrial appendage under the data 
generation scheme 2. The FDR control (left panel) and power given the actual FDRs (right panel) for a range 
of per-condition sample sizes from 2 to 100, under FDR thresholds (i.e., claimed FDRs) of 10% (top panel) and 
0.1% (bottom panel). The claimed FDRs, actual FDRs, and power were all calculated as the averages of 50 
semi-synthetic datasets with the same per-condition sample size



Page 11 of 14Ge et al. Genome Biology          (2024) 25:283  

advantageous for being fast and able to strictly control the FDR for all sample sizes. In 
contrast, dearseq-perm is too slow thus impractical, and dearseq-asym cannot control 
the FDR when the sample size is less than 40 per condition. Nevertheless, we acknowl-
edge dearseq’s advantage for allowing more complex experimental designs, which the 
Wilcoxon rank-sum test cannot handle but needs extensions such as the probabilistic 
index models [13].

Response to Yang et al. [3]

Key messages in Yang et al. [3]

The correspondence by Yang et al. pointed out that edgeR might still be suitable for DE 
analysis of large-sample RNA-seq datasets after outlier samples are removed by win-
sorization. To perform winsorization, Yang et al. initially normalized the count data by 
sample, using the samples’ size factors calculated by the estimateSizeFactors() function 
in the R package DESeq2. Next, for each gene, the normalized counts that exceeded a 
certain percentile were truncated to the percentile value. These modified counts were 
next rescaled by multiplication with the original size factors and then rounded to the 
nearest integer, yielding the winsorized counts. Finally, the winsorized counts were fed 
into DESeq2 and edgeR for DEG identification.

After applying the above winsorization procedure, Yang et  al. found that edgeR had 
similar power as the Wilcoxon rank-sum test after the 93rd percentile winsorization was 
used, and edgeR could control the FDR close to the target level, while DESeq2 still had 
the FDR inflation issue (Fig. 2B in Yang et al. [3]). Hence, Yang et al. claimed that edgeR 
could still be used for DE analysis on large-sample RNA-Seq data after winsorization.

However, we assert that a practical challenge is setting the winsorization threshold, a 
tuning parameter that needs user specification and determines DE analysis results. Yang 
et al. recommended users permute the datasets many times and select the winsorization 
threshold as the percentile that controls the false discoveries made from permuted data 
and maximizes the discoveries made from real data. However, this approach requires 
running edgeR separately for each threshold on each permutated dataset and is thus 
computationally intensive. Besides, this strategy suffers the double-dipping issue (select-
ing the winsorization threshold and performing statistical tests on the same data) that 
hurdles the validity of statistical tests.

The Wilcoxon rank‑sum test outperforms DESeq2 and edgeR in the absence of outliers

In this response, we independently investigated whether DESeq2 or edgeR has advan-
tages over the Wilcoxon rank-sum test for large sample-size data in the absence of outli-
ers (because the purpose of winsorization is to remove outliers). We considered an ideal 
scenario by employing the model-based strategy to generate semi-synthetic data, which 
contained true DEGs and no outliers, from a real GTEx dataset of heart left ventricle 
vs. atrial appendage (with sample sizes 376 and 386). Specifically, we set each gene’s 
marginal distributions under each condition as a NB distribution, satisfying the model 
assumption of DESeq2 and edgeR. Then, we applied DESeq2 and edgeR in the default 
mode (no winsorization) or with three winsorization thresholds (the 93%, 95%, and 
97% percentiles) to the semi-synthetic data. Our results show that all implementations 
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of DESeq2 and edgeR (the default and the three winsorized variants) did not control the 
FDRs under the target levels (Fig. 4).

Generated by the model-based strategy, the semi-synthetic data contain no outliers 
because the model satisfies the assumption of DESeq2 and edgeR. However, we still 
observed inflated FDRs of DESeq2 and edgeR, suggesting that the existence of outliers 
is not the only reason for the inflated FDR issue. Another reason may be associated with 
the inaccurate estimation of the dispersion parameter of each NB distribution, one per 
gene per condition. This dispersion parameter is a nuisance parameter that, although 
not of interest, must be estimated before a hypothesis test can be performed on the 
mean parameter, the parameter of interest. (Note that in DESeq2 and edgeR, the null 
hypothesis for each gene is that the gene has the same mean parameter, with samples’ 
size factors adjusted, under the two conditions.) Hence, if the dispersion parameter has 
an estimation bias, it would likely lead to a mis-calibrated p-value for the hypothesis 
test of the mean parameter. This dispersion parameter estimation issue, if existent, can-
not be fixed by winsorization. Indeed, we observed that DESeq2 and edgeR still cannot 
control the FDR on the model-based semi-synthetic data after winsorization. Hence, we 
conclude that the Wilcoxon rank sum test still outperforms DESeq2 and edgeR on large 
sample size data, even allowing for winsorization.

In summary,  although DESeq2 and edgeR have fewer false positives after winsori-
zation,  (Fig. 4), they still cannot control the FDR on model-based semi-synthetic data 
that satisfy their model assumption. Moreover, winsorization adds subjectivity to data 
analysis, and winsorization threshold choice is challenging. Hence, we hold our recom-
mendation in the original study [1] that the Wilcoxon rank-sum test is a preferred and 
robust choice for large sample-size RNA-seq data if complex experimental design is not 
involved.

Fig. 4 Comparison of DESeq2 without or with winsorization, edgeR without or with winsorization, and 
Wilcoxon rank-sum test on semi-synthetic data generated using the model-based strategy from GTEx data 
of heart left ventricle vs. atrial appendage. The FDR control (left panel), power given the claimed FDRs 
(middle panel), and power given the actual FDRs (right panel) under a range of FDR thresholds (i.e., claimed 
FDRs) from 0.001 to 5%. DESeq2 and edgeR were applied in default (without winsorization) or with three 
winsorization thresholds (the 93%, 95%, and 97% quantiles) based on the winsorization procedure in Yang 
et al. [3] . As the true DEGs and non-DEGs were defined without assuming batch effects, DESeq2 and edgeR 
were applied without normalization. The claimed FDRs, actual FDRs, and power were all calculated as the 
averages of 30 semi-semisynthetic datasets generated independently
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Final note

We would like to acknowledge the insightful points raised by the two correspondences, 
which have helped us refine our analysis and strengthen the rigor of our conclusions. We 
firmly believe that these discussions contribute substantially to the field’s understanding 
of DE analysis—a topic that may have previously been regarded as a solved issue.

After discussion and analysis in this response, we recommend no normalization in 
simulation schemes where no batch effects are assumed in defining true DEGs and non-
DEGs. Based on our new analysis results in this response, the conclusions in our original 
study [1] continue to hold. The non-parametric Wilcoxon rank-sum test can consist-
ently control the FDR and achieve good statistical power for large sample-size RNA-seq 
data. While winsorization that removes outliers may reduce the inflated FDR issue of the 
parametric DE methods DESeq2 and edgeR, selecting the threshold for winsorization is 
arbitrary or computationally intensive. This subjectivity issue is also prevalent in other 
data preprocessing steps, such as the removal of top principal components (PCs) follow-
ing data transformation, where the number of PCs to remove is subjectively determined. 
In contrast, the Wilcoxon rank-sum test is a robust approach independent of parameter 
specifications or arbitrary thresholds.

We would also like to clarify that our published study [1] was in no way a comprehen-
sive benchmark. Many DE methods have been developed in the last decade (including 
more than 20 methods benchmarked in previous studies; see Table S1 in [1]). It is possi-
ble that some methods may outperform the Wilcoxon rank-sum test on specific datasets 
or under specific settings. Instead of providing the “best” method, an impossible mission 
given the vast diversity of datasets, our study [1] aimed to emphasize the importance 
of sanity checks and voice the cautionary message that using popular methods without 
checks might lead to excessive false positives.
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