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Abstract 

Spatial transcriptomics is revolutionizing the exploration of intratissue heterogeneity 
in cancer, yet capturing cellular niches and their spatial relationships remains challeng-
ing. We introduce SpottedPy, a Python package designed to identify tumor hotspots 
and map spatial interactions within the cancer ecosystem. Using SpottedPy, we 
examine epithelial-mesenchymal plasticity in breast cancer and highlight stable niches 
associated with angiogenic and hypoxic regions, shielded by CAFs and macrophages. 
Hybrid and mesenchymal hotspot distribution follows transformation gradients reflect-
ing progressive immunosuppression. Our method offers flexibility to explore spatial 
relationships at different scales, from immediate neighbors to broader tissue modules, 
providing new insights into tumor microenvironment dynamics.
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Background
The spatial organization of cancer cells and their interactions with immune and stromal 
cells in their environment are instrumental in dictating tumor behavior and progression 
[1]. Recent developments in sequencing technologies that are able to profile large areas 
of the entire tissue in minute detail, such as spatial transcriptomics [2, 3], are increas-
ingly enabling us to gain a more comprehensive understanding of the complex eco-
system of tumor microenvironments (TME) [4, 5]. Profiling the cancer tissue spatially 
allows us to explore the tumor architecture and its heterogeneity in detail, paving the 
way to deciphering the crosstalk between tumor cells and their surroundings and open-
ing up new therapeutic opportunities [6, 7].

Several studies to date have demonstrated the advantages of spatial transcriptomics 
in delineating major tissue domains with distinct cell composition [8], cancer hallmarks 
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[9], immunosuppressive hubs [10, 11], entire tumor ecotypes with divergent clinical out-
comes [12], or the impact of specific drugs on inhibiting tumor progression [13]. How-
ever, focusing on areas of the tissue that are relevant for a specific biological question 
and surveying relationships between cell populations at the right scale remains a chal-
lenge in these datasets. To delineate biologically meaningful tissue areas using spatial 
transcriptomics, some of the current analytical methods, such as SpaGCN [14] and 
BayesSpace [15] focus on unsupervised clustering of gene expression. Approaches like 
NeST [16] or GASTON [17] take this one step further and incorporate a nested struc-
ture or topography metrics to outline hierarchically organized co-expression hotspots 
aligning with tissue histology. Given that similar cells often cluster together [18,  19], 
methods that can reliably detect statistically significant spatial clusters are important 
in reinforcing the accuracy of cell states determined from continuous signatures. Cell-
Charter [20] capitalizes on this concept and uses Gaussian mixture models to identify 
stable clusters representing spatial niches exhibiting distinct shapes and cell plasticity. 
More targeted clustering approaches employing user-defined signatures or cell types 
have recently been implemented in Voyager [21] and Monkeybread [22]. Such methods 
can play a significant role in enhancing the interpretation of cell types that are inferred 
through spatial transcriptomic deconvolution techniques, but flexibly exploring spatial 
units at different scales remains difficult.

When it comes to assessing the spatial proximity of different clusters, methods that 
infer this through co-enrichment within the immediate neighborhood have been imple-
mented in packages like SquidPy [23]. However, there is a lack of methods that calcu-
late a differential spatial relationship between cell types or signatures of interest, e.g., 
hypoxia. Additionally, current approaches lack analytical methods to define and com-
pare shorter and longer-range interactions between specific areas or cell populations of 
interest. Given that the scale of certain biological processes in cancer, such as hypoxia, 
remains elusive, relying solely on conventional spot neighborhood-centric methods 
might obscure complex, spatial interactions. This is known as the modifiable areal unit 
problem (MAUP) in geostatistics [24], where spatial data patterns are observed to shift 
contingent on the size and shape of the spatial analysis units. While a growing number 
of methods address the need for multi-scale analysis [11, 23–26], the effect of changing 
spatial units has generally been underexplored in spatial biology [18].

Here, we build on the use of key ideas in the geostatistics field within spatial biology 
as previously demonstrated by Voyager [21] to devise an analytical method tailored to 
interrogate spatial relationships at various scales within 10x Visium transcriptomic data-
sets. Our approach defines areas densely inhabited by particular cell types or marked 
by user-defined gene signatures (hotspots) and areas depleted of cell types or gene 
signatures (coldspots) and statistically evaluates the proximity of such areas to other 
predefined hotspots or coldspots. We additionally compare the spatial relationships 
detected using the hotspot approach to those observed when looking only at the imme-
diate neighborhood of individual spots. We assess how the relationships between these 
variables change when varying the hotspot size or the neighborhood size surround-
ing a spot. Importantly, we allow users to perform differential spatial analysis between 
two signatures or cell types of interest. For example, we can answer questions such as 
“which immune hotspots are significantly closer to mesenchymal hotspots compared to 
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epithelial hotspots?” We have implemented this method in the Python package Spot-
tedPy, available at https:// github. com/ secri erlab/ Spott edPy.

To highlight the potential of our method, we focus on a key process underlying cancer 
progression, the epithelial-to-mesenchymal transition (EMT). During EMT, polarized 
epithelial cells undergo multiple molecular changes and lose their identity to acquire a 
mesenchymal phenotype [27]. The interplay between EMT and the tumor microenvi-
ronment (TME) is multifaceted: while the TME is believed to be an inducer of EMT, 
mesenchymal tumor cells potentially influence the TME [28, 29]. This dynamic is further 
complicated by the nature of EMT, which is not merely a dichotomous event. Current 
research suggests that EMT is a spectrum, varying from a continuous gradient to dis-
tinct, discrete stages [30, 31]. Depending on the context, cells undergoing this transition 
can be locked in an EMT state, or alternate between a large landscape of EMT states, 
a phenomenon called epithelial-mesenchymal plasticity (EMP) [32]. We have previ-
ously shown that the tumor spatial organization follows EMP gradients and that hybrid 
and mesenchymal cells establish distinct interactions with the TME in small datasets of 
spatially profiled breast tumors [33]. However, the spatial organization and interactions 
of cells across this EMP spectrum within the tumor milieu remain largely undefined 
at a larger scale and could offer great potential in developing therapies that exploit cell 
intrinsic or microenvironmental vulnerabilities linked with this process. Here, we show-
case the capability of SpottedPy to unveil new relationships between EMT hotspots and 
the TME in breast cancer spatial transcriptomics data. By facilitating multi-scale com-
parisons of tumor and TME relationships, we yield rigorous evidence of spatial dynam-
ics and offer an interpretable and intuitive measure of interactions between tumor cells 
and their environment at flexible scales.

Results
SpottedPy: a tool to investigate biological modules and spatial relationships at different 

scales

From direct cell–cell interactions to immediate neighborhoods and even across larger 
modules, cancer cell evolution is impacted at different scales by its environment 
(Fig.  1a). However, exploring this landscape flexibly and determining the areas within 
the tissue where these effects are most prominent is not straightforward. While neigh-
borhood enrichment is commonly used in the field [23,  25,  28], analyzing continuous 
expression signatures and examining how the size of the neighborhood influences spatial 
relationships are areas that remain underdeveloped. Furthermore, inspecting the imme-
diate neighborhood of cells of interest versus broader hotspots within the tissue will 
yield different insights into the tissue architecture and organization, and this warrants 
further investigation.

We introduce SpottedPy, a Python package that enables a statistically principled inter-
rogation of biological modules and cell–cell relationships at different scales in spatially 
profiled tissue (Fig. 1b).

This method encompasses:

• Neighborhood enrichment analysis: Our method introduces a function designed to 
examine correlations between cell states, populations, or processes within individual 

https://github.com/secrierlab/SpottedPy
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Fig. 1 SpottedPy provides a multi-scale approach to analyze spatial transcriptomic relationships. a Overview 
of spatial scales captured in the SpottedPy workflow, from direct cellular contacts to broader cellular 
hotspots. Figure created with BioRender.com. b SpottedPy workflow overview. Visium spatial transcriptomics 
data is loaded as a pre-processed AnnData object where there is the option to select the region of interest 
(ROI) within the slide, e.g., AnnData.obs column labeled with tumor cells. The default spatial analytics include 
the following: (i) neighborhood enrichment: inner-outer correlation, which correlates cell prevalence or 
signatures in individual spots with their immediate neighborhood; (ii) neighborhood enrichment: all-in-one 
correlation, which correlates cell prevalence of signatures within a spot or spatial unit; (iii) shortest path 
to hotspot, which calculates the minimum distance between each spot within a selected hotspot and 
the nearest spot in other hotspots; (iv) statistical analysis of distances, which compares distances from a 
reference hotspot to another hotspot of interest, and assesses the statistical significance of the relationships. 
Scale analysis allows us to compare relationships defined at different scales in both approaches, either by 
increasing the number of rings included for neighborhood enrichment or increasing the hotspot size. The 
outputs for the different modules include various plots to highlight the relationships. Figure created with 
BioRender.com
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spatial transcriptomics spots and their immediate neighborhood (Fig.  1b (i–ii)). In 
this context, a “neighborhood” is delineated as a ring encompassing six Visium spots 
around a designated central spot, which we calculate by treating the spatial spots as 
a network. We offer functionality to test how a signature affects its direct neighbor-
hood (inner-outer correlation), or within neighborhood units (all-in-one correla-
tion).

• Hotspot identification: We have implemented the Getis-Ord Gi* statistic to identify 
spatial clusters of continuous gene signatures across the tumor slide (Fig. 1b). Users 
can flexibly filter for specific regions within the slide to focus on when creating hot-
spots. By comparing defined regions with high or low gene expression or cell type 
signatures against a null hypothesis of random distribution, this analysis reveals sta-
tistically significant “hotspots” or “coldspots.” Hotspots represent areas with a high 
concentration of a particular cell type or signature, suggesting an aggregation that is 
unlikely to be due to chance. Conversely, coldspots indicate regions where the target 
cells or signatures are scarce, also beyond what would be expected in a random dis-
tribution. We provide functionality to test enrichment of specific signatures within 
hotspots and coldspots.

• Distance statistics: SpottedPy includes analytical tools to measure and interpret the 
distances between identified clusters, such as between tumors and immune hotspots. 
The primary method calculates the shortest path to a hotspot, defined as the mini-
mum distance from any point within a defined hotspot to the nearest point within a 
specified comparison hotspot (Fig. 1b (iii)). Importantly, SpottedPy allows the user 
to compare distance distributions to key hotspots, for example, finding the hotspots 
that are significantly closer to mesenchymal hotspots than epithelial hotspots (or 
other areas that can be considered as a reference) (Fig. 1b (iv)). Importantly, Spot-
tedPy assigns a statistical significance to these proximity measures to determine if 
observed patterns are likely to occur just by chance. To statistically analyze the rela-
tionships across multiple slides, we use generalized estimating equations. SpottedPy 
allows the user to test either the minimum, mean, or median distance from each hot-
spot or assess all distances from each spot within a hotspot.

• Scale/sensitivity analysis: We provide the ability to systematically evaluate how cell–
cell relationships evolve within the tissue as we vary the size of the neighborhood 
or of the hotspot of interest. For the neighborhood enrichment approach, this can 
be assessed by varying the number of concentric rings around the central spot. For 
the hotspot approach, SpottedPy recalculates the Getis-Ord Gi* statistic with vary-
ing neighborhood sizes, enabling the identification of clusters at different spatial 
scales. By analyzing how the distances between hotspots change with neighborhood 
size, the package can illuminate shifting spatial relationships, providing insights into 
how biological entities interact across different scales. Additionally, SpottedPy allows 
users to examine how cluster relationships change when modifying the significance 
threshold for identifying hotspots with the Getis-Ord Gi* statistic.

To highlight the potential of our method, we employ SpottedPy to investigate the rela-
tionships between tumor cells undergoing EMT and the TME in 12 breast cancer slides 
profiled using the 10x Genomics Visium spatial transcriptomics platform, integrated 
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from Wu et al. [12], Barkley et al. [28] and the 10x Genomics website [34]. To infer indi-
vidual cell types within the slides, we performed cell deconvolution using the Cell2loca-
tion method [35] and a scRNA-seq reference of annotated breast cancer cell population 
profiles from 123,561 cells [12]. We scored the tumor cells in the scRNA-seq dataset 
with a defined epithelial (EPI) and an epithelial-to-mesenchymal transition (EMT) sig-
nature (see the “  Methods” section) and used Gaussian mixture modeling to assign a 
state to the tumor cells [36, 37]. To more precisely identify tumor cells within the spatial 
transcriptomic data, which tend to show vast expression variability, we employed the 
copy number inference tool STARCH [38] and only kept spots that showed evidence of 
copy number changes, which are likely to be tumor-specific. We validated the STARCH 
results by comparing them to publicly available pathologist-annotated slides [39, 40] 
(Additional file 1: Fig. S1a–b). Furthermore, to explore the heterogeneity of EMT sta-
ble states established during the development and progression of breast cancer, we 
employed the discrete EMT states recently defined by Brown et al. [41], encompassing 
an epithelial phenotype, two intermediate (hybrid) states (EM2 and EM3), a late inter-
mediate quasi-mesenchymal state (M1) and a fully mesenchymal state (M2).

The spatial landscape of EMT and associated tumor hallmarks

Firstly, we aimed to explore the cellular environment that is conducive to E/M progres-
sion. To do so, we focused solely on tumor hotspots and two key cellular hallmarks that 
have been previously linked with EMT, hypoxia, and angiogenesis. Hypoxia, character-
ized by low oxygen levels, has been long recognized as a key enabler of tumorigenic pro-
cesses [42]. Under hypoxic conditions, tumor cells stabilize hypoxia-inducible factors 
(HIFs), primarily HIF-1α, which promotes angiogenesis [43], the formation of new blood 
vessels from pre-existing vasculature, to re-establish oxygen supply. Hypoxia has been 
shown to induce EMT and resistance to therapy [44], and therefore understanding how 
such relationships develop spatially within the tissue can help devise localized therapies 
that can interrupt these interactions in breast cancer.

Within individual spatial transcriptomics slides, we used SpottedPy to delineate tumor 
areas, and further identified EMT hotspots within these areas using the EMT state as 
assigned using Cell2location (Fig. 2a). A certain degree of heterogeneity in the number 
and spatial distribution of EMT hotspots could be observed across the cohort (Addi-
tional file 1: Fig. S1c). Notably, slides 3, 7, and 10 exhibited the greatest dispersion, which 
was independent of the cancer subtype (TNBC and ER + HER2 +). This dispersion did 
not influence overall EMT relationships with other cell types (Additional file  1: Fig. 
S2a). In contrast, slides 1 and 5 showed minimal dispersion, also without affecting EMT 
relationships with other cell types. The distributions of individual EMT and EPI signa-
ture scores per slide are highlighted in Additional file 1: Fig. S1c–d. The EPI signature 
typically followed a normal distribution across spatial tumor spots, whereas the EMT 
signature exhibited a positive skew, in line with this state being expected to be rarer 
within the primary tumors. Slides 0, 1, and 9 display more pronounced skewness for the 
EPI signature, suggesting a more advanced stage of EMT transformation within these 
tumors, which was not an effect of the cancer subtype as these slides present different 
breast cancer pathologies.
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To confirm and further explore the emergence of additional cancer hallmarks in the 
context of EMT, we also defined proliferative, hypoxic, and angiogenic hotspots within 
the same slides (Fig. 2a). To check that SpottedPy accurately measures hotspot distance 
using the shortest path approach, we simulated a hypoxia hotspot moving away from 
a mesenchymal hotspot of interest (Additional file 1: Fig. S1e). As the hypoxia hotspot 
moves farther away from the mesenchymal hotspot the calculated distance between the 
hotspots increases, as expected.

When visually inspecting the slides, we find angiogenesis and hypoxia frequently 
accompanying EMT hotspots (Fig.  2a). When quantifying hotspot distances using 
SpottedPy, we confirm that EMT hotspots tend to be closer to angiogenic and hypoxic 
hotspots compared to EPI hotspots, proliferative hotspots, or the average tumor cell 
(Fig. 2b–c). In contrast, proliferative hotspots were significantly closer to EPI hotspots 
(p < 0.001, Fig. 2c). These relationships were consistently observed across breast cancer 
slides (Additional file 1: Fig. S2a).

To further grasp the positioning of these EMT and EPI areas within the tumor, we used 
SpottedPy to determine the tumor perimeter (Fig. 2d) and calculated distances to it. We 
conducted a visual benchmark of our tumor perimeter calculation against the Cottrazm 
method [40], confirming that our algorithm accurately captures similar perimeter trends 

Fig. 2 The spatial interplay between EMT progression and cancer hallmarks. a A spatial transcriptomics 
slide (slide 0) highlighting from left to right: tumor spots, proliferation hotspots, EPI hotspots, EMT 
hotspots, hypoxic hotspots, and angiogenic hotspots identified by SpottedPy. The black square indicates 
a representative area where the close proximity of EMT, angiogenic, and hypoxic hotspots is depicted. b 
Distances from angiogenic (left) and hypoxic (right) hotspots to EMT hotspots, EPI hotspots, proliferative 
hotspots, and the average tumor cell, respectively, averaged across all 12 samples (*** p < 0.001). c Differences 
in proximity between EMT hotspots/EPI hotspots and hypoxic, proliferative, and angiogenic regions, 
summarized across the 12 slides. The dashed line represents no difference in relative distance to EMT 
hotspots or EPI hotspots. The dots situated above the dashed line indicate hallmarks that are significantly 
closer to EMT hotspots. The colors indicate the p-value ranges obtained from the Student’s t-test for 
differences in distance to EMT hot/cold areas. d Spatial plot depicting the tumor perimeter in red and 
the tumor cells in blue. e Distance from the tumor perimeter to EMT hotspots and EPI hotspots, respectively 
(*** p < 0.001). f Distances from selected hotspots to the tumor perimeter, ordered by increasing proximity, 
across the 12 cases. The dashed line represents no significant difference. The colors depict p-value ranges 
obtained from Student’s t-tests for differences in distance to the tumor perimeter
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(Additional file 1: Fig. S2b). We find EMT hotspots closer to the tumor perimeter com-
pared to EPI hotspots, suggesting a state with significant interaction with the surround-
ing microenvironment (Fig. 2e). As expected, angiogenesis hotspots were located closest 
to the tumor perimeter, followed by hypoxia hotspots (Fig. 2f ). The spatial localization 
of angiogenesis near the tumor perimeter aligns with its function in supplying nutrients 
and oxygen to rapidly growing tumors [45]. The prominence of hypoxic regions succeed-
ing angiogenic zones is consistent with the understanding that rapid tumor growth often 
outpaces its vascular supply, leading to hypoxic conditions [42]. These hypoxic condi-
tions are alleviated in the angiogenic areas, as we find hypoxic coldspots are closest to 
the tumor perimeter (Fig. 2f ). Cell proliferation hotspots were observed farthest from 
the tumor perimeter, and located at spatially distinct locations to EMT hotspots, in line 
with tumor growth studies outlining a proliferative epithelial core and EMT transforma-
tion at the periphery facilitating cancer cell intravasation and migration [46, 47].

EMT hotspots are immunosuppressed and shielded by myCAFs and macrophages

Having confirmed that SpottedPy is able to recapitulate expected spatial hallmarks 
of EMT within the breast cancer tissue, we next expanded our analysis to dissect the 
interplay between tumor cells undergoing EMT and other immune and stromal cells 
in the microenvironment. Alongside EMT hotspots, we calculated hotspots for 41 cell 
types in the TME, including different lymphocyte, myeloid, and fibroblast populations, 
as defined by Wu et  al. [12] (Fig.  3a–c). When visually inspecting these hotspots, we 
observed myofibroblastic CAF (myCAF) hotspots and EMT hotspots tended to co-
localize (Fig. 3a–c). Quantifying hotspot distances using SpottedPy allowed us to con-
firm that tumor EMT hotspots were indeed closer to myCAF hotspots (Fig.  3d). The 
relationship is particularly highlighted when we look at the cellular niches that are sig-
nificantly closer to EMT hotspots compared to EPI hotspots, revealing a predominance 
of various CAF subtypes. This is well in line with existing studies, as myCAFs have been 
shown to produce TGF-β, which is a well-known EMT trigger [48]. They have also been 
linked to ECM deposition and suppression of antitumor immunity [49–52].

Additionally, monocytes and particularly tumor-associated macrophages (TAMs) 
(LAM2 APOE + macrophages and SIGLEC1 + macrophages) were prominently closer 
to EMT hotspots as compared to EPI hotspots. Monocytes, and TAMs derived from 
them, are known to modulate the environment of tumor cells undergoing EMT, usually 
by promoting immune suppression in the TME, which facilitates tumor progression and 
metastasis [53]. Natural Killer (NK), NK T-cells, and CD8 + T-cells, the immune cells 
that can directly kill transformed cells, were among the least associated with EMT hot-
spots, potentially reflecting a mechanism of immune evasion employed by tumor cells 
that have undergone EMT (Fig. 3f ). The T-cell sub-population closest to EMT hotspots 
when compared to EPI were LAG3 + CD8 + T-cells, an exhausted population suggestive 
of immune evasion capacity in these EMT areas [54].

The cohort-level association between EMT hotspots and the myCAF s5 population 
was maintained in individual tumors, suggesting that this is a universal pattern of EMT 
transformation in breast cancer and not subtype-specific (Additional file 1: Fig. S2a). In 
contrast, levels of inter-patient heterogeneity, often even within the same breast can-
cer subtype, were evident for a variety of cells including macrophages, memory B-cells, 
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Fig. 3 The spatial interplay between EMT progression and the TME. a Spatial transcriptomics plots 
highlighting tumor cell spots (left), the EMT gradient through these tumor spots (middle), and EMT hotspots 
identified by SpottedPy (right) in slide 5. b Spatial localization of macrophage-enriched spots (left) and 
SpottedPy-defined LAM2 APOE + macrophage hotspots (right) in slide 5. c Spatial localization of myCAF 
s5-enriched spots (left) and SpottedPy-defined myCAF hotspots in slide 5. d Distance between EMT 
hotspots and different TME cell hotspots, ranked by proximity. Smaller, darker bubbles represent shorter 
distances to EMT hotspots. Results are averaged over 12 slides. e Distances from various cells in the TME 
to EMT/EPI hotspots. The dashed line represents no difference in proximity to either EMT hotspots or EPI 
hotspots. The dots situated to the left of the dashed line indicate cell populations that are significantly 
closer to EMT hotspots, ordered by decreasing proximity. The colors indicate the p-value ranges obtained 
from the GEE fit for differences in distance to EMT hot/ EPI hot areas. Results are across 12 slides. f Barplots 
showing signature scores of immune suppression scored within EMT hotspots and EPI hotspots [12, 55]. g 
Differences in the average expression of genes in the immune suppression signature between EMT and EPI 
hotspots for each slide (row). Red depicts genes significantly upregulated in EMT hotspots and blue indicates 
genes significantly upregulated in EPI hotspots (Student’s t-test p < 0.05, adjusted for multiple testing using 
the Bonferroni correction). White indicates a non-significant relationship [12, 55]. h Similar to (f) but for 
checkpoint inhibitor response [61, 62]. i Similar to (g) but focusing on the genes in the checkpoint inhibitor 
response signature
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naïve B-cells, iCAFs, NK cells, NKT cells, CD4 + T-cells, and CD8 + T-cells. However, 
distances to EMT hotspots were consistent across subgroups of cells (Additional file 1: 
Fig. S2c), suggesting that, within individual patients, these cells share common response 
patterns irrespective of the broader heterogeneity observed across the patient cohort.

Due to the close relationship with potential immunosuppressive factors, we next 
sought to test whether EMT hotspots were indeed likely to be immunosuppressed. We 
found that EMT hotspots displayed a significantly increased expression of immunosup-
pression and exhaustion markers [12, 55] compared to EPI hotspots (Fig. 3f–g). Highly 
expressed suppressive genes included FAP, which has been shown to activate immune 
suppressive cells such as regulatory T-cells (Tregs) and myeloid-derived suppressor cells 
(MDSCs) [56, 57], INHBA, which fosters a switch in macrophage polarization towards 
a tumor-promoting state [58], VCAN, which has been shown to inhibit T-cell prolifera-
tion [59] and COL6A3, linked to the increased recruitment of macrophages [60]. Key 
immune checkpoints B7-H3 (CD276), OX40 (TNFRSF4) and TIM3 (HAVCR2) also dis-
played significantly higher expression (p < 0.05) in some tumor slides (Fig. 3g). Indeed, 
EMT hotspots presented increased exhaustion (Additional file  1: Fig. S2d–e). Thus, it 
appears that the chronic nature of immune activation nearby EMT hotspots leads to 
the exhaustion of these cells, potentially suggesting opportunities for immune reacti-
vation through checkpoint blockade strategies. To verify this hypothesis, we examined 
the expression of an interferon-gamma signature that has been associated with response 
to immunotherapy [61, 62] (Fig. 3h–i). We found that EMT hotspots had significantly 
increased expression of genes within the signature, most notably of HLA-A, and HLA-
C, often associated with the activation of immune responses [63]. The hotspots also 
had increased expression of HLA-F, which has immune suppressive functions [64]. The 
expression of interferon-gamma-related genes, especially those involved in antigen pres-
entation like HLA molecules, is a favorable prognostic marker in the context of check-
point blockade therapy [65]. These findings suggest that while EMT hotspots are areas of 
significant immunosuppression and immune cell exhaustion, they also retain elements 
of immune activity that could be enhanced through targeted therapies such as check-
point inhibitors.

EMT hotspots display intra‑ and inter‑patient heterogeneity

We next sought to interrogate spatial relationships at a more granular level and ana-
lyzed the association of EMT hotspots with other immune and stromal areas within 
the same slide and across the different patient samples (Fig. 4a). While the cells that 
had the strongest relationship with EMT hotspots when averaged over the slides, 
such as SIGLEC + and LAM2 APOE + macrophages and CAFs, displayed the most 
consistent trends across the slides, it was evident that these relationships were still 
heterogenous. For example, in slide 4, while seven EMT hotspots were closer to 
LAM2 APOE + macrophages than the median EPI hotspots, two were not (Fig.  4a). 
This is further illustrated through visual inspection of the individual EMT hotspots 
and comparison with the LAM2 APOE + macrophage hotspots, enabled through 
SpottedPy functions (Fig. 4b). As expected, stronger associations with myCAFs and 
macrophage subtypes were pervasive in most tumors and hotspots (Fig. 4a). T-cells 
demonstrated noticeable heterogeneity across patients, but clustered together, 
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Fig. 4 Inter- and intratumor heterogeneity of EMT hotspots. a Dendrogram highlighting the proximity of 
EMT and EPI hotspots to TME cell types. The dendrogram is clustered according to the distances from EMT/
EPI hotspots to regions enriched in immune/stromal cells. Red indicates that an EMT hotspot is closer to a 
cell type, while blue suggests that the EPI hotspots in that slide are on average closer. The x-axis displays 
individual EMT hotspots (label indicates hotspot number and slide number). To the right of the dendrogram, 
distances to the tumor perimeter, suppression, and exhaustion signature scores are illustrated. Red indicates 
that the hotspot is significantly enriched in these signatures compared to the average EPI hotspot in the slide 
(p < 0.05), and blue indicates EPI hotspots are significantly enriched (p < 0.05). Further to the right, individual 
genes associated with the exhaustion signature are shown, with red indicating the gene expression is higher 
in EMT hotspots (p < 0.05) and blue indicating the gene expression is higher in EPI hotspots (p < 0.05). b Slide 
4 with individual EMT hotspots labeled (left) and LAM2 APOE + macrophage hotspots highlighted (right). 
c Distance distributions for each EMT hotspot in slide 4 to LAM2 APOE + macrophage hotspots. d Distance 
distributions of EMT hotspots to LAM2 APOE + macrophages across all 12 slides in the cohort
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reinforcing the idea that these cells share common response patterns. The EMT hot-
spots that were closer to T-cells were more likely to be enriched in exhaustion mark-
ers (Fig. 4a, right panel), suggestive of chronic immune activation. We also show that 
EMT hotspots show a consistent trend of displaying higher suppressive scores than 
EPI hotspots (Fig. 4a). Additionally, nearly all EMT hotspots were closer to the tumor 
perimeter (Fig. 4a), corroborating the overall trends reported in Fig. 2e–f. Overall, the 
inter-patient heterogeneity seemed to supersede the intra-patient heterogeneity.

SpottedPy offers functionality to inspect the distance distributions for hotspots 
within a slide (Fig. 4c), and across each slide (Fig. 4d). Visualizing these distributions 
highlights that while LAM2 APOE + macrophages are on average closer to EMT hot-
spots compared to EPI hotspots, there is heterogeneity within each slide and across 
different slides.

Overall, these results showcase the range of hotspot analyses enabled by the Spot-
tedPy package and the potential to uncover useful biological insights.

Sensitivity analysis of hotspots

Determining how the hotspot size, governed by the parameter specifying the number 
of nearest neighbors for the Getis-Ord Gi* metric, affects spatial relationships is cru-
cial for meaningful spatial analysis. We systematically increased hotspot dimensions 
(Fig. 5a–b) to assess the consistency and robustness of identified spatial associations. 
We find that associations between EMT hotspots, hypoxia, and angiogenesis, as well 
as mutual exclusivity with proliferative hotspots, are robust and consistent features of 
the tumor microenvironment, with such relationships remaining remarkably stable 
across a range of hotspot dimensions (Fig.  5c). The cell populations that we previ-
ously identified as having the nearest proximity to EMT hotspots at a fixed parameter 
size (myCAFs, macrophages and monocytes) also maintained this relationship when 
varying hotspot sizes. Cells that were farther apart presented less stable associations, 
such as CD8 + LAG3 + T-cells where the relationship broke down at a hotspot size of 
250, and naive B-cells where the relationship changed multiple times with increasing 
hotspot size (Fig. 5c, Additional file 1: Fig. S3a). These findings suggest that interac-
tions with certain cells in the TME may be more pronounced and relevant at a smaller 
scale. We found that proliferative hotspots were the most consistently adjacent to EPI 
hotspots at various hotspot sizes. Adjusting the p-value cut-off used to detect spatial 
clusters using the Getis-Ord Gi* highlighted similar relationships (Additional file  1: 
Fig. S3b). To evaluate the stability of the spatial relationships, we introduced Gaussian 
noise and spot reshuffling into the dataset and examined the persistence of these rela-
tionships (see the “ Methods” section). This approach demonstrated that the method 
is robust to low levels of noise, but also effectively discriminates between biologically 
meaningful signals from those arising from random spatial distributions (Fig. 5e–f ). 
While random noise simulated through spot reshuffling can mimic some aspects of 
structured data (Additional file 1: Fig. S3c), the hotspots are significantly smaller than 
those that are biologically relevant (Additional file 1: Fig. S3d). Crucially, the loss of 
specific associations among particular cell types when noise is introduced (Fig. 5e–f ) 
contributes to the reduction of false positives even if hotspots are identified [66].
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Other distance metrics

We note that there are alternative methods to assess hotspot distances. The “centroid 
to centroid” methodology offers a practical and straightforward way to approximate the 
distances between hotspots, but it is crucial to acknowledge its simplicity. As depicted in 
Additional file 1: Fig. S3e, the size of a hotspot significantly influences its centroid loca-
tion. Consequently, a larger hotspot, despite being physically closer, may appear farther 
away when measuring centroid distances, due to its centroid being located farther from 

Fig. 5 Sensitivity analysis of hotspot relationships. a EMT hotspot generation using a hotspot neighborhood 
parameter of 2, 10, 50, 100, and 300, respectively. Increasingly larger neighborhoods are highlighted in 
different colors as indicated in the legend. b Hypoxia and epithelial hotspot generation using a hotspot 
neighborhood parameter of 2, 10, 50, 100, and 300, respectively. c Sensitivity plots highlighting the distance 
from EMT hotspots (blue) and EPI hotspots (yellow) to regions enriched in various cancer hallmarks and 
TME components as the hotspot size increases. The distances to the average of all tumor cells are used as a 
reference (green). Distances are averaged over all 12 slides. d Number of distinct hotspots identified as the 
hotspot neighborhood parameter is increased, averaged over 12 slides. e Evaluating the impact of increased 
noise or spot shuffling on the association between angiogenic hotspots and EMT/EPI hotspots. f Evaluating 
the impact of increased noise or spot shuffling on the association between LAM2 APOE + macrophage 
hotspots and EMT/EPI hotspots
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the point of interest compared to a smaller, neighboring hotspot. Thus, the centroid 
approach may miss the local variation that the shortest path method can capture. This 
could suggest that applying it on our breast cancer slides could potentially miss the more 
complex relationship observed between EMT hotspots and macrophage or monocyte-
enriched areas.

Spatial EMT relationships in other cancer types

We further investigated whether the relationships observed for EMT hotspots in breast 
cancer were consistent across other cancer types.  We assessed these relationships in 
publicly available datasets from basal cell carcinomas (BCC) [67], pancreatic ductal ade-
nocarcinomas (PDAC) [68], and colorectal cancers (CRC) [69].

Within the BCC slides, angiogenic and hypoxic hotspots were closer to EMT hot-
spots (Additional file 1: Fig. S4a–b). Interestingly, proliferative hotspots were also closer 
to EMT hotspots, suggesting an alternative relationship compared to breast cancer. 
POSTN + fibroblasts were closer to EMT hotspots, while there were no significant spa-
tial relationships with T-cells or NK cells, paralleling the findings in breast cancer.

We next assessed the relationships within one available PDAC slide (Additional file 1: 
Fig. S4c). Both angiogenesis and fibroblasts displayed a spatial relationship like that 
observed with EMT hotspots in breast cancer. In contrast, immune cells were located 
nearer to EMT coldspots, and there was no significant association between EMT hot-
spots and hypoxic environments, diverging from the patterns observed in breast cancer.

In CRC, myofibroblasts, angiogenesis, and hypoxia showed comparable spatial rela-
tionships to those seen in breast cancer (Additional file  1: Fig. S4d–e). Notably, regu-
latory T-cells, T-helper cells, and NK cells were significantly closer to EMT hotspots, 
potentially indicating enhanced immune recognition around EMT hotspots compared 
to other cancer types.

While limited in breadth and cell type resolution, these analyses suggest that the inter-
play between tumor cells undergoing EMT and other immune and stromal cells within 
the TME is likely to be tissue-specific, and future work should explore this in more 
detail.

Neighborhood enrichment analysis

The neighborhood enrichment technique captures more localized, shorter-range rela-
tionships with the TME. Additionally, it can assess spatial relationships of phenotypes 
that would be considered scattered (states that do not occur spatially clustered and 
therefore might be overlooked by a hotspot-based approach). We experimented with 
two approaches, ensuring a robust analysis that is less sensitive to the MAUP (Fig. 1b 
(i–ii)). We first assessed how the spatial relationships change by correlating phenotypes 
across a central tumor spot and the direct neighborhood surrounding it (a ring encom-
passing six Visium spots). We then assessed how the phenotypes are linked within a spot 
and then expanding what is considered a spatial spot. Varying the method and the num-
ber of rings in both cases enables us to assess whether the observed hotspot relation-
ships shift with the unit of analysis and indicates how large of an influence the EMT 
regions have on surrounding spots.
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Our analysis revealed that angiogenesis, myCAFs, macrophages, and monocytes 
exhibited the most significant correlation, in descending order, with cells undergo-
ing EMT (p < 0.001) across the 12 slides (Additional file 1: Fig. S5a). This finding rein-
forces the spatial relationships that we previously identified using the hotspot method. 
A weaker association was evident for naive B-cells, T-cells, NK cells, and NKT cells, in 
accordance with the hotspot approach. We also found that these spatial relationships 
were stable across various neighborhood sizes (Additional file 1: Fig S5b).

The methods show broadly similar trends, suggesting the cellular relationships 
observed occur both due to colocalization in a spot as well as diffusing influence around 
the spot.

EMT state fluctuations shape distinct immune niches within the same tumor

As mentioned previously, EMT is not a binary process—instead, cells are found to 
occupy multiple hybrid states during the E/M transition. We sought to investigate the 
spatial distribution of tumor hotspots occupying epithelial (EPI), early intermediate 
(EM2, EM3), late intermediate quasi-mesenchymal (M1), and fully mesenchymal (M2) 
states using our multi-scale approach. We captured distinct gene programs represent-
ing these states using Non-Negative Matrix Factorisation (NMF) via the CoGAPs work-
flow [70] (Additional file  1: Fig. S6a). The corresponding hotspots occupied distinct 
spatial locations within the tissue (Additional file 1: Fig. S6b). When visually inspecting 
these hotspots, we detected a progressive transformation in the tumor, as highlighted 
in slide 4 (Fig. 6a). This transition was marked by a spatial shift from EPI into the M1 
state, with EM3 serving as an intermediate stage. EM2 displayed volatility in this pro-
gression, while M2 was predominantly co-localized with the EPI state. The experimental 
study by Brown et al. [41] detected that M2 cell clones gained integrin β4 (a key epithe-
lial marker) when cultured, which might have played a significant role in steering these 
cells towards adopting characteristics more akin to an epithelial phenotype. This would 
possibly explain the co-localization of these two states within the spatial transcriptomics 
slide.

To investigate the relationship between these states, we correlated them with each 
other and with the generic EMT hallmark signature employed previously for each tumor 
spot (Additional file 1: Fig. S7a). The lack of a significant positive correlation between 
EPI, EM2, EM3, M1, and M2 suggests that these are discrete EMT states. We found a 
significant correlation between the EMT hallmark signature and the quasi-mesenchy-
mal M1 state, suggesting these are likely capturing a similar state. The EPI state was 
negatively correlated with the EMT hallmark signature, as expected. In terms of spatial 
distribution, the EMT hallmark hotspots were located closest to the M1 hotspots, and 
furthest away from the EPI hotspots (Additional file 1: Fig. S7b), in line with the correla-
tion analysis and confirming the hypothesized identities of these states.

When investigating how tumor cells occupying distinct EMT states relate to their 
microenvironment, we found that the EPI state has negative correlations with immune 
and stromal cells within the TME, suggestive of a state that is not directly being shaped 
by the TME (Fig. 6b). Interestingly, the M1 state had stronger associations overall with 
a wide range of cells within the TME, with the strongest relationships established with 
myCAFs, macrophages, and monocytes. We observed similar but weaker correlations 
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with the EM3 state and considerably weaker correlations with the EM2 state. The pro-
gressive loss of association with cells in the EM3 and EM2 states is in line with the idea 
of these states representing intermediate, more plastic states preceding the apparently 
more stable M1 state. The M1 state is observed in proximity to natural killer (NK) cells, 
which is a distinct deviation from the EMT hallmark signature. This observation sug-
gests that while there are resemblances between the M1 and EMT hallmark signatures, 

Fig. 6 EMT state dynamics uncovered from the spatial exploration of breast cancer tissue. a Spatial plots 
depicting epithelial (EPI), intermediate (EM2, EM3), quasi-mesenchymal (M1), and fully mesenchymal (M2) 
hotspots in slide 4. b Neighborhood enrichment analysis depicting the association between tumor cells 
occupying distinct EMT states and other cells in the immediate TME, summarized across all 12 slides. Red 
indicates a significant positive correlation (Pearson, p < 0.05), blue a significant negative correlation (p < 0.05), 
and white a non-significant correlation (p > 0.05). **** p < 0.0001, *** p < 0.001, ** p < 0.01, * p < 0.05. c Scaled 
immune suppression [12] and immunotherapy response signature [65] scores calculated using Gene Set 
Enrichment Analysis (GSEA) for each EMT state hotspot and proliferative hotspot, summarized across the 12 
samples. d Enrichment and depletion of expression for genes in the immune suppression signature within 
EMT state hotspots for each slide (column). Red depicts genes significantly upregulated in EMT state hotspots 
compared to the average of all tumor cells and blue represents genes significantly downregulated in the EMT 
state hotspot (Student’s t-test p < 0.05). White indicates a non-significant relationship. P-values were adjusted 
for multiple testing using the Bonferroni correction. e Similar to (d), focusing on genes in the checkpoint 
inhibitor response signature
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the M1 state is likely representative of a unique cellular phenotype with the potential to 
recruit cells capable of directly eliminating cancer cells.

Furthermore, the quasi-mesenchymal M1 state presented an enrichment of markers 
linked with immunosuppression and positive response to checkpoint inhibitors (Fig. 6c, 
Additional file 1: Fig. S7c), with a subset of genes, most notably COL6A3, VCAN, HLA-A, 
HLA-C, CXCL9 and CXCL10, driving these relationships (Fig. 6d–e). The intermediate 
states are to a certain extent on the way to adopting this immune suppressive phenotype, 
with weaker relationships observed with the EM2 state, a slightly stronger enrichment 
with EM3, and the strongest score with M1 (Fig.  6c–e, Additional file  1: Fig. S7d). In 
contrast, the M2 state has a unique phenotype and displays both positive and negative 
relationships with genes within these signatures. We compared these states to the prolif-
erative signature and found that proliferative hotspots mirror the relationship of the EPI 
state, suggesting that it is a tumor state that is not linked to immunosuppression.

Overall, this analysis sheds light on the changing landscape of tumor-TME interac-
tions during EMT progression in breast cancer, highlighting both intratumor heteroge-
neity and universal interactions that could be exploited for therapy.

Discussion
In this study, we introduce SpottedPy, a Python package that identifies tumor hotspots 
in spatial transcriptomics slides and explores their interplay with the TME at varying 
scales. We show that the Getis-Ord Gi* statistic can be successfully applied to delineate 
cellular hotspots and provide meaningful biological insights into the spatial organization 
of the tumor tissue in its immune and stromal contexture. While various studies have 
recently applied “hotspot”-type of analysis to spatial transcriptomic data  [21,  71,  72], 
these methods do not offer a way to assess the confidence level in the identification of 
specific clusters/hotspots  in a manner that can be tailored to the biological question 
and the scale at which the process is expected to act, whereas our method assigns a 
p-value to each hotspot which can be flexibly tuned to according to the user’s stringency 
requirements. Furthermore, other available methods do not extensively analyze the dis-
tances between hotspots. We build on these approaches to analyze the spatial relation-
ships between hotspots in a statistically principled manner, with the additional ability 
of anchoring hotspot identification to specific regions of interest, such as tumor cells or 
non-tumor cells, enabling us to interrogate the spatial dynamics within the TME via a 
more targeted approach. By computing and statistically comparing distances, we offer 
an interpretable and intuitive measure of relationship between spatial variables. This 
approach further allows differential spatial analysis between a hotspot of interest and a 
reference region which other methods do not include. Our method additionally assesses 
the effect of hotspot size on spatial relationships and compares hotspot spatial trends to 
the relationships captured using neighborhood approaches, more frequently applied in 
spatial transcriptomic analysis, to build layers of spatial evidence.

By adopting our SpottedPy methodology to explore the spatial dynamics of tumor 
plasticity phenotypes in breast cancer, we have uncovered key differences between 
tumor regions undergoing EMT and those lacking evidence for this transformation. Our 
approach illuminates the pronounced spatial correlations of EMT with key cancer hall-
marks, notably hypoxia and angiogenesis, in line with findings by He et al. [11] in breast 
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cancer spatial transcriptomics detecting these signatures overlapping certain niches. As 
tumor cells undergo EMT in response to hypoxic stimuli, they are likely to gain a sur-
vival advantage in a nutrient-deprived environment and be better equipped to invade 
and migrate towards regions with better oxygenation, potentially following angiogenic 
gradients [44, 47, 73].

We find a strong relationship between EMT and CAFs across all slides. CAFs have 
been linked to tumor cells undergoing EMT in our previous bulk and spatial transcrip-
tomic analyses [33], and have been shown to induce EMT in endometrial cancer cells 
[74] and hepatocellular carcinoma [75]. It is worth noting that CAFs share similar genes 
with EMT signatures and therefore differentiating between these two cell types can be 
challenging, notably in bulk tumor settings [76]. Here, we have leveraged scRNA-seq for 
deconvolution, alongside detecting copy number aberrations to confirm the presence 
of tumor cells, which adds a further layer of confidence to the accurate delineation of 
these cell populations. However, the accuracy of this separation cannot be fully guaran-
teed and future research investigating this relationship using single-cell resolved spatial 
transcriptomic data would allow us to confirm this relationship more confidently. We 
further note that while we have tried to ensure EMT is captured only within the tumor 
cells themselves by investigating signatures only within the tumor spots identified by 
STARCH and by using EMT reference datasets from pure tumor populations, further 
validation of tumor regions, e.g., by staining with specific markers, would be beneficial 
for users who wish to employ our method in their spatial transcriptomics experiments.

In addition to expected CAF associations, we observe a strong relationship with 
macrophages and monocytes across multiple spatial scales. We particularly observed 
relationships with SIGLEC + macrophages, LAM2 APOE  + macrophages, and 
EGR1 + macrophages, which are analogous to M2-like, tumor-promoting, macrophages 
[12]. Macrophages secrete TGF-β, TNF-α, IL-6 and IL-8, which are well-characterized 
EMT stimuli [77, 78]. The relationship has been observed in bulk transcriptomics [79], 
in spatial analysis of mouse models of skin carcinoma where depletion of macrophages 
inhibited EMT progression [30], and in specific niches within breast cancer spatial tran-
scriptomics slides [11]. While the relationships with CAFs and macrophages were dis-
played across the majority of tumor slides, within each slide there were EMT hotspots 
where this relationship was less clear. This indicates that other factors which we have not 
accounted for in our analyses could play a significant role in driving EMT within local 
niches.

We uncovered heterogeneous relationships across breast tissue slides with other key 
immune cells such as NK cells, NKT cells, and T-cells, highlighting the multifaceted 
interplay between these components. T-cells have been shown to induce EMT in breast 
cancer [80, 81], and this relationship has further been highlighted in bulk transcriptom-
ics [82] and smaller-scale spatial transcriptomic analyses [33, 83] however there is also 
evidence showing the exclusion of these cells, linked to the relationship between EMT, 
macrophages and CAFs promoting an immune suppressed environment [52,  77,  84]. 
Indeed, our findings uncover notable associations between EMT hotspots and immune 
suppression, alongside signatures indicative of a response to checkpoint therapy, 
building upon evidence that EMT may offer crucial insights for existing strategies in 
immunotherapy [11, 85].
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Our analysis reveals that EMT occurs in discrete spatial locations distinct from prolif-
erative signatures. This finding is in line with a recent analysis of breast cancer by Bark-
ley et al. [28] utilizing a more focused spatial transcriptomic dataset, previous research 
by Tsai et  al. [86] demonstrating that a departure from a mesenchymal-like state is a 
prerequisite for tumor cell proliferation in mouse models, and a recent study by Chen 
et al. [87] investigating EMT states in scRNA-seq data. Such spatial characterizations at 
various scales were largely unexplored.

Delving deeper into EMT, we observed that hybrid EMT states exhibit more heteroge-
neous and weaker associations with tumor-promoting populations in the TME in com-
parison to the quasi-mesenchymal M1 state. This disparity might be indicative of the 
inherent plasticity of hybrid EMT states [88, 89], complicating our ability to delineate 
clear relationships, but might also suggest a directed trajectory towards an M1 state. The 
M2 state demonstrates more similar distribution and TME associations to the EPI state, 
which may be attributed to the activation of integrin β4 (a key epithelial marker) when 
cultured, a limitation mentioned in the original study which potentially transformed the 
state towards a more epithelial phenotype [41].

These results point to a highly dynamic and plastic nature of tumor cells in navigat-
ing the complexities of their microenvironment. The interactions likely extend beyond a 
linear framework. Hypoxia, a known catalyst for both angiogenesis and EMT [90], can 
set off a cascade of events that not only amplify these processes but also create a condu-
cive environment for the recruitment of immunosuppressive cells such as macrophages 
[91, 92]. These cells can in turn bolster angiogenesis, thereby fuelling a self-perpetuat-
ing cycle that further complicates the tumor landscape. These insights provide a fur-
ther understanding of the cellular interactions and environmental factors that underpin 
tumor progression and metastasis, and could in the future pave the way for the develop-
ment of targeted interventions aimed at disrupting these complex networks for thera-
peutic benefit.

The consistency of the relationships we observed across different hotspot sizes and 
neighborhood scales further strengthens our confidence in the findings. The neighbor-
hood ring approach predominantly captured TME cells that have infiltrated the tumor, 
offering insights into the immediate cellular interplay at the tumor periphery. In con-
trast, the hotspot methodology provided a broader view, encompassing interactions at 
more distal locations. By pinpointing statistically significant cellular hotspots, we bolster 
the reliability of our observations, especially considering the inherent inaccuracies that 
can arise from deconvolution algorithms applied to non-single-cell transcriptomic data-
sets such as those from the Visium platform.

To the best of our knowledge, there are no direct comparisons available for our Spot-
tedPy methodology due to the unique nature of focusing on discrete spatial clusters of 
user-defined continuous signatures at expanding scales and performing differential spa-
tial relationships compared to a reference for downstream analysis.

Our insights into the spatial organization of tumors during EMT progression are lim-
ited by the significant amount of uncertainty surrounding EMP programs [31, 32] and 
their incomplete characterization in different types of breast cancer and other neo-
plasms. In the future, integrating further hybrid states characterized in other breast can-
cer studies [87] will help expand our understanding of this complex process alongside 
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its multiple locally stable peaks and valleys. The heterogeneous relationships observed 
with CD8 + and CD4 + T-cells and NK cells require further experimental validation and 
exploration. As spatial transcriptomics datasets become more widely available, expand-
ing this analysis beyond the current 12 slides could help clarify the perceived spatial 
heterogeneity and better distinguish universal relationships from local, patient-specific 
effects.

When investigating to what extent these spatial EMT relationships are maintained 
or differ across cancer types other than breast cancer, we were limited by the availabil-
ity and size of such datasets, as well as the differences in cell composition between tis-
sues. Ultimately, any uncovered differences are likely attributed to the unique TME and 
genetic basis of each cancer type, and in the future a more in-depth analysis in larger 
datasets once these become more widely available will shed light on the heterogene-
ity of these relationships. Additionally, extending these analyses to single cell-resolved 
spatial datasets and incorporating ligand-receptor signaling information into the evalu-
ation of spatial effects on cell populations will increase the confidence in the identified 
relationships.

Overall, our findings confirm the expected spatial effects of EMT progression in 
tumors, demonstrating that SpottedPy can capture complex associations between tumor 
cells and their microenvironment. Such insights can help unveil the local effects of the 
TME and linked tumor cell vulnerabilities that could ultimately be exploited for thera-
peutic benefit. While the analyses presented here primarily illustrate insights into breast 
cancer tissue organization, we note that SpottedPy can be applied to discern spatial 
relationships in other cancer types (as briefly demonstrated) as well as other diseases 
and even within healthy tissue. SpottedPy has been developed on spatial transcriptom-
ics data from the 10x Visium platform; however, we note it can be easily extended to 
other spatially-resolved platforms and future releases will provide further functionality 
to enable this.

Conclusions
In conclusion, SpottedPy provides a detailed and multifaceted analysis of the spatial 
dynamics within individual spatially profiled tumors. By rigorously investigating the 
proximities of various cellular components, we have underscored the significant influ-
ence exerted by cells undergoing EMT in sculpting the TME and highlight SpottedPy as 
a package that can be applied to answer other spatial biology questions.

Methods
The SpottedPy package

SpottedPy package is compatible with Python 3.9 and depends on scanpy, libpysal, and 
esda packages.

• GitHub: https:// github. com/ secri erlab/ Spott edPy
• Tutorials: spottedpy_multiple_slides.ipynb (this tutorial walks through using Spot-

tedPy with multiple spatial slides, highly recommended for downstream statistical 
analysis). spottedpy_tutorial_sample_dataset.ipynb tutorial walks through using 
SpottedPy with a single slide.

https://github.com/secrierlab/SpottedPy
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• Sample data: https:// zenodo. org/ recor ds/ 10392 317

The key functions are outlined in the relevant sections below.

Spatial transcriptomic datasets

Breast cancer Visium slides were obtained from Barkley et  al. [28] (slides 0–2), from 
10x Genomics (slides 3–5) [34] and Wu et  al. [12] (slides 6–12). Slide annotations, if 
available, are displayed in Additional file  1: Fig. S1b. We combined the three datasets 
of breast cancer 10X Genomics Visium spatial transcriptomic datasets into a common 
anndata Python format for analysis. Pre-processing and normalization were conducted 
using the ScanPy (Single-Cell Analysis in Python) package [93]. We analyzed a total of 
32,845 spatially profiled spots, and retained spots if they exhibited at least 100 genes 
with at least 1 count in a cell, had more than 250 counts per spot, and less than 20% of 
total counts for a cell which are mitochondrial. Pre-processed BCC slides were obtained 
from Gania et al. [67], PDAC slides were obtained from Ma et al. [68] and CRC slides 
were obtained from Valdeolivas et al. [69]. We used the deconvolution results provided 
in each of the source studies.

Spatial data deconvolution

Due to the imperfect near-single cell resolution of current spatial transcriptomic meth-
ods, we require a method to deconvolve each spot in order to infer the cellular popula-
tions enriched in each spot. Cellular deconvolution was carried out using Cell2location 
[35]. Cell2location decomposes the spatial count matrix into a predefined set of refer-
ence cell signatures by modeling the spatial matrix as a negative binomial distribution, 
given an unobserved gene expression level rate and gene- and batch-specific over-dis-
persion. A scRNA-seq breast cancer dataset containing 100,064 cells from 26 patients 
and 21 cell types from Wu et  al. [12] was chosen to perform the deconvolution. Cell 
types in the chosen breast dataset consisted of cancer epithelial cells (basal, cycling, 
Her2, LumA, LumB), naïve and memory B-cells, myCAF-like and iCAF-like cancer-
associated fibroblasts, perivascular-like cells (PVL), including immature, cycling and dif-
ferentiated, cycling T-cells, cycling myeloid cells, dendritic cells (DCs), endothelial cells 
expressing ACKR1, CXCL12 or RGS5, endothelial lymphatic LYVE1-expressing cells, 
luminal progenitors and mature luminal cells, macrophages, monocytes, myoepithelial 
cells, natural killer (NK) cells, natural killer T (NKT) cells, plasmablasts, CD4 + T-cells, 
and CD8 + T-cells. We scored the scRNA-seq cancer epithelial cells with EPI and EMT 
signatures [36, 37] and used Gaussian mixture modeling to assign the cells to EPI and 
EMT clusters.

The scRNA regression model was trained with 500 epochs, and the spatial transcrip-
tomic model was trained with 20,000 epochs using a GPU. To delineate the tumor 
cells within our spatial transcriptomics dataset, we used the STARCH Python pack-
age designed to infer copy number alterations (CNAs) [38]. STARCH identifies tumor 
clones (setting K = 2 clones) and non-tumor spots. It confirms the identification of nor-
mal spots by clustering the first principal component into two clusters using K-means. 
Changing the value of K alters the number of identified tumor clones, but the number 
of cells labeled as tumor cells remains the same. This approach is based on the principle 

https://zenodo.org/records/10392317
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that the direction of maximum variance in the expression data typically reflects the divi-
sion between non-cancerous and cancerous spots. Only tumor cell spots were consid-
ered for EMT analysis. The EPI and EMT spots identified using Cell2location were used 
to define the EPI and EMT hotspots in the breast cancer downstream analysis.

EMT state and hallmark signature scoring

To identify more granular distinct EMT states, we employed data from Brown et  al. 
[41], consisting of seven RNA-seq sequenced cell clones, derived from SUM149PT 
inflammatory breast cancer cell line with 3 repeats spanning the EMT spectrum from 
epithelial-like (EPI), quasi-mesenchymal (M1), fully mesenchymal (M2) and three dis-
tinct intermediates (EM1, EM2, EM3). We used these data to derive a weighted gene 
signature to represent the EMT states. We captured EMT gene patterns from this data 
using non-negative matrix factorization (NMF) by applying the CoGAPs workflow [70]. 
We used ProjectR’s implementation of lmfit R function to map the captured EMT pat-
terns onto the spatial transcriptomic spots [94]. This transfer learning approach assumes 
that if datasets share common latent spaces, a feature mapping exists between them and 
can measure the extent of relationships between the datasets. The final states were cap-
tured with 20 patterns and 10,000 training iterations. The number of patterns was cho-
sen based on capturing the discrete states with the highest accuracy. The EM1 state was 
not distinguishable from the EPI state, so we merged the two states. Thus, overall we 
obtained scores for one epithelial, two intermediate, a quasi-mesenchymal, and a fully 
mesenchymal state for each spot.

Hypoxia and angiogenesis were defined based on signatures deposited at MSigDB 
[95]. The proliferative signature was compiled from Nielsen et al. [96]. The immunosup-
pression signature was compiled from Wu et al. [12] and Cui et al. [55]. The checkpoint 
blockade response signature was compiled from Johnson et al. [61] and Liu et al. [62]. 
The exhaustion signature comprised classical exhaustion markers: CTLA4, PDCD1, 
TIGIT, LAG3, HAVCR2, EOEMT, TBX21, BTLA, CD274, PTGER4, CD244, and CD160 
[97]. All these signatures were scored using scanpy.tl.score_genes function. EMT hot-
spots and coldspots were identified in the BCC, CRC, and PDAC slides using the EMT 
hallmark signature [95].

Graph construction

The SquidPy [23] (Spatial Single-Cell Analysis in Python) package was used for graph 
construction using sq.gr.spatial_neighbors and slide visualization of the Visium spatial 
slides. NetworkX [98] was used for further analysis of the networks derived from the 
spatial transcriptomic spots. The deconvolved spot results were used to assign node 
labels. Edges were assigned based on the spot neighbors.

Neighborhood enrichment analysis

We calculated neighbors for each spot by summing the deconvolution results in a ring 
surrounding the spot of interest and normalizing by the number of spots assigned as a 
neighbor, using the adjacency matrix of the graph to calculate the interacting cells.

Two methods were developed to assess neighborhood enrichment. Inner-outer cor-
relation (with the function sp.calculate_inner_outer_correlations) was calculated by 
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correlating signatures across a central spot of interest and the direct neighborhood of 
spots surrounding it (a ring encompassing six Visium spots), after filtering for tumor 
spots only. To perform the sensitivity analysis, we increased the number of rings sur-
rounding a spatial transcriptomic spot (setting rings_range parameter in sp.calculate_
inner_outer_correlations function) to consider as spot neighbors and compared the 
change in the correlation coefficient. The first ring consists of 6 spots, and the second 
ring includes 18 spots (combined from the 1st and 2nd rings). Subsequent rings fol-
low this pattern. The number of rings selected for sensitivity analysis reflects a balance 
between spatial coverage and resolution. Using a smaller number of rings (e.g., 1, 2, 3) 
allows the analysis to focus on the immediate microenvironment around the central 
spot, providing high resolution. As more rings are added, the spatial coverage increases, 
capturing broader interactions but potentially diluting local-specific signals. Correla-
tions were calculated using Pearson’s correlation coefficient.

An all-in-one correlation (sp.calculate_neighbourhood_correlation function) was 
calculated by correlating phenotypes with cells within a spot, and then incrementally 
increasing the number of rings to correlate across progressively larger spatial units. The 
functions sp.correlation_heatmap_neighbourhood and sp.plot_overall_change plot the 
neighborhood results.

Hotspot analysis

Hotspots were calculated using The Getis-Ord Gi* statistic as implemented using the 
PySAL package [99], using 10 as the neighborhood size parameter by default (number of 
spot neighbors surrounding the central Visium spot) and a p-value cut-off of 0.05, unless 
otherwise stated.

The Getis-Ord Gi* equation is defined as follows:

where wij is the spatial weight between location i and  j , x is the mean of the variable of 
interest across all locations, s is the standard deviation of the variable of interest across 
all locations and n is the total number of locations.

A high positive value at location  i suggests a hotspot for the attribute, while a nega-
tive value indicates a coldspot. The significance of G∗  is determined by comparing the 
observed G∗

obs to a distribution of G∗ values generated under the assumption of spatial 
randomness. This distribution is obtained by permuting the attribute values across loca-
tions and recalculating G∗ for each permutation. The p-value for a hotspot (when G∗ is 
positive) or a coldspot (when G∗ is negative) is then derived from this distribution. This 
approach provides a non-parametric method to evaluate the significance of spatial clus-
ters, offering a robust measure against potential spatial randomness in the data.

Hotspots can be identified by calling sp.create_hotspots function, and specifying in the 
filter_columns parameter what region within the spatial slide to calculate the hotspot 
from, e.g., tumor cells. The neighourhood_parameter can be altered here (default = 10). 
We encourage the user to choose the parameter most relevant for their biological 

G∗
i =

n
j=1 wijxj − x n

j=1 wij

s
n n

j=1 w2
ij −

n
j=1 wij

2

n− 1
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question, e.g., whether they are interested in local interactions of the signature, or 
broader tissue modules. SpottedPy allows the user to perform the sensitivity analysis to 
observe how the parameters affect downstream analysis. For the 10x Visium platform, 
we would recommend starting with parameter k = 10 as this captures all the spots sur-
rounding the central spot. The variable with the most stable relationships across a range 
of parameters (and therefore scales) is likely one of most interest for further investiga-
tion. However, specific short-range relationships defined locally rather than across 
scales could also be of interest in certain circumstances depending on the user’s bio-
logical questions. Coldspots are automatically created when sp.create_hotspots is called, 
and hotspots are labeled in the anndata object by appending “_hot”, and coldspots by 
appending “_cold” to the original column name. When an appropriate contrasting sig-
nature is available for comparison, e.g., EPI compared to EMT we do not need to use the 
coldspots for comparison. The relative_to_batch parameter ensures hotspots are calcu-
lated across each slide, otherwise they are calculated across multiple slides. Importantly, 
if multiple slides are used (highly recommended for statistical power), these should be 
labeled using .obs[‘batch’] within the anndata object. Additionally, the library ID in the .
uns data slot should be labeled with the .obs[‘batch’] value. Hotspots can be plotted using 
sp.plot_hotspots.

Hotspots and coldspots for EMT states and cell proliferation were calculated after fil-
tering for tumor cells as labeled by STARCH, as we aimed to specifically capture these 
processes within the tumor cells themselves. EMT hotspots are the regions with a high 
proportion of mesenchymal tumor cells within the tumor-labeled spots. Therefore, they 
only include a subset of tumor spots. Similarly, cell proliferation hotspots are regions 
with high fractions of proliferating tumor cells. All other hotspots (deconvolved cell pro-
portion data and angiogenic and hypoxia signatures) were calculated using all the spots 
within the spatial transcriptomic slide.

Distance metrics

After calculating the hotspots and coldspots, we then assessed the distances from hot-
spots of interest (EPI and EMT) to other cell types and signature hotspots and coldspots. 
We used the shortest path approach to calculate distances between hotspots as follows:

Let H represent the set of coordinates of spots in the hypoxia hotspot.
Let M represent the set of coordinates of spots in the mesenchymal tumor hotspot.
Let E represent the set of coordinates of spots in the epithelial tumor hotspot.

For a spot m  in  M and a spot  e in E , the shortest path to any point h in H was 
determined:

where d(m, h) represents the Euclidean distances from a spot m in M . After obtain-
ing the minimum distances for each spot in M and E we calculated the median (with 

dmin(m, H) = min
h∈H

(d(m, h))

dmin(e, H) = min(d(e, h))
h∈H
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the additional functionality to choose min or mean) to provide a summary statistic that 
reflects the general proximity of each hotspot ( M and E ) to H . The function sp.calcu-
lateDistances calculates this.

To then infer the impact of cellular hotspots on distance to EMT compared to EPI 
hotspots, we employed generalized estimating equations (GEE). This model enables us 
to estimate population-average effects involving repeated measurements across multi-
ple spatial transcriptomic slides. The model estimates the coefficient ( βmes ) for the tran-
sition from reference hotspots ( E ) to primary hotspot variables ( M ). A positive βmes 
would indicate that mesenchymal hotspots are, on average, located further from hypoxic 
areas compared to epithelial hotspots, while a negative value suggests a closer proxim-
ity. sp.plot_custom_scatter, setting compare_distance_metric to min, mean or median to 
compare the summary statistics for each hotspot across each slide. Setting it to None 
calculates the statistical significance of all distances from each hotspot.

The centroid approach is calculated as follows. The centroid CH of a set of spots H with 
coordinates xh, yh is the arithmetic mean of the coordinates. This point represents the 
center of the mass of the points in the set H .

For set H :

Similar calculations are employed for M and E . We then calculated the Euclidian dis-
tance between the centroids.

Tumor perimeter calculation

Any spot was considered part of the tumor perimeter if it had more than one neighbor-
ing spot (nodes in the graph) that were not classified as tumor spots. A spot sǫ S is con-
sidered part of the tumor perimeter, P, if:

where S denotes the set of all spots, T  denotes the set of tumor spots, and N (s) repre-
sents the neighboring spots of spot s . Additionally, we applied a filtering step to remove 
isolated perimeter spots. This involved eliminating any identified perimeter spots that 
had no neighboring perimeter spots, thereby excluding isolated perimeter spots caused 
by a single non-tumor labeled spot within the tumor. This approach helped us to delin-
eate the boundary of the tumor accurately by focusing on the transitional area where 
tumor and non-tumor spots meet (called using sp.calculate_tumour_perimeter).

To quantify the number of tumor hotspots, we calculated the number of connected 
components within the graph that were labeled as hotspots. This calculation was crucial 
for understanding the distribution and clustering of tumor cells.

Sensitivity analysis

The sensitivity analysis to evaluate the impact of varying hotspot sizes on the spatial 
relationships was achieved by incrementally adjusting the neighborhood parameter for 
the Getis-Ord statistic, which directly influenced the size of identified hotspots 

CH =

(∑

h∈H xh

|H |
,

∑

h∈H yh

|H |

)

s ∈ P ⇔ |N (s) ∩ (S\T )| > 1
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(sp.sensitivity_calcs). As we expanded the neighborhood parameter, we compared the 
distances between the newly defined hotspots and other existing hotspots of interest.

To assess the robustness of the spatial relationships between cell types and gene sig-
natures, we systematically introduced Gaussian noise into our cell type proportion data 
and gene signature matrix. Gaussian noise, characterized by a mean of zero and vary-
ing standard deviations, was added to mimic experimental and technical variability. This 
approach allows us to evaluate the stability of detected EMT hotspots under different 
noise conditions. We defined a range of sigma values to represent varying levels of noise 
intensity. To further test the robustness of the spatial relationships, we randomly shuf-
fled the cell proportion data and gene signature values and assessed how this affected 
downstream analysis.

Statistical analysis

Groups were compared using a two-sided Student’s t-test. Multiple testing correction 
was performed where appropriate using the Bonferroni method. Graphs were generated 
using the seaborn and Matplotlib Python packages.
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