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Abstract 

Background:  Genome-wide association studies (GWAS) have identified thousands 
of loci for disease-related human traits in cross-sectional data. However, the impact 
of age on genetic effects is underacknowledged. Also, identifying genetic effects 
on longitudinal trait change has been hampered by small sample sizes for longitudinal 
data. Such effects on deteriorating trait levels over time or disease progression can be 
clinically relevant.

Results:  Under certain assumptions, we demonstrate analytically that genetic-by-age 
interaction observed in cross-sectional data can be indicative of genetic association 
on longitudinal trait change. We propose a 2-stage approach with genome-wide pre-
screening for genetic-by-age interaction in cross-sectional data and testing identified 
variants for longitudinal change in independent longitudinal data. Within UK Biobank 
cross-sectional data, we analyze 8 complex traits (up to 370,000 individuals). We iden-
tify 44 genetic-by-age interactions (7 loci for obesity traits, 26 for pulse pressure, few 
to none for lipids). Our cross-trait view reveals trait-specificity regarding the proportion 
of loci with age-modulated effects, which is particularly high for pulse pressure. Testing 
the 44 variants in longitudinal data (up to 50,000 individuals), we observe significant 
effects on change for obesity traits (near APOE, TMEM18, TFAP2B) and pulse pressure 
(near FBN1, IGFBP3; known for implication in arterial stiffness processes).

Conclusions:  We provide analytical and empirical evidence that cross-sectional 
genetic-by-age interaction can help pinpoint longitudinal-change effects, when cross-
sectional data surpasses longitudinal sample size. Our findings shed light on the dis-
tinction between traits that are impacted by age-dependent genetic effects and those 
that are not.
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Background
Genome-wide association studies (GWAS) based on cross-sectional data have signifi-
cantly enhanced the understanding of the genetic underpinning of complex diseases and 
disease-related traits by identifying thousands of genetic loci associated with diseases 
or traits [1]. However, they are limited in their ability to capture genetic effects on trait 
changes over time. Such effects indicate genetic susceptibility to deteriorating biomarker 
levels and even disease progression [2]. They can be clinically relevant and may inform 
personalized medicine approaches, allowing for the early identification of individuals 
at risk or the development of targeted interventions [2]. Thus recently, there has been 
a growing interest in longitudinal GWAS, as evidenced by longitudinal GWAS of bio-
marker trajectories in UK Biobank (UKB) [3], a longitudinal GWAS of BMI trajectories 
in UKB [4], or several longitudinal GWAS of kidney function from the CKDGen con-
sortium [5] or from the Million Veterans Program [6]. However still, only few genetic 
effects on trait change over time have been identified. Identification of such effects has 
been hampered by relatively small sample sizes for longitudinal measurements.

We postulate a link between the genetics of trait change over time from longitudi-
nal data with genetic-by-age interaction in cross-sectional data: we hypothesize that a 
genetic-by-age interaction effect estimated from cross-sectional data can serve as indi-
cator of a genetic effect on longitudinal change under certain assumptions. Then, cross-
sectional genetic-by-age interactions can reflect the genetic influence on how trait levels 
change as individuals age. Here, we propose a 2-stage approach to gain power in testing 
for genetic effects on longitudinal trait change. The approach comprises a first stage to 
select variants with significant genetic-by-age interaction in cross-sectional data and a 
second stage to test the selected variants for association with trait-change in longitudi-
nal data. The 2-stage approach reduces the multiple testing burden in the longitudinal 
data by exploiting relatively large cross-sectional sample sizes, and thus power, in the 
first stage.

The aim of this research is to demonstrate, analytically and empirically, when the 
genetic-by-age interaction and the genetic effect on linear trait change are equivalent. 
We demonstrate that integrating cross-sectional genetic-by-age interactions can boost 
power to identify genetics of trait change in longitudinal GWAS. We apply our approach 
to the UKB cross-sectional and longitudinal data and aim to identify genetic-by-age 
interaction and longitudinal change loci for obesity, lipid, and blood pressure traits. We 
highlight traits for which genetic effects can change by age and demonstrate that genet-
ics-by-age interactions have been underacknowledged.

Results
Limited availability of longitudinal data in UKB

Utilizing UKB data for European individuals, we set out to identify genetic-by-age inter-
action and genetic associations for trait change for eight complex traits: two obesity 
traits (weight and body mass index, BMI), three blood pressure traits (systolic blood 
pressure, SBP; diastolic blood pressure, DBP; pulse pressure, PP), and three lipid traits 
(HDL-cholesterol, HDL-C; LDL-cholesterol, LDL-C; triglycerides, TG). For obesity 
and blood pressure traits, two timepoints were available in up to ~ 50,000 individuals 
(Table  1). In contrast, lipid traits, two timepoints were available in only up to 15,000 
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individuals. For all traits, the number of individuals with longitudinal information was 
considerably less, about one fifth or 1/20th, compared to the respective cross-sectional 
sample size available at the baseline visit (> 380,000 individuals for all traits; Table  1, 
Additional file 1: Table S1). Clearly, power of a longitudinal GWAS to identify longitudi-
nal change effects in this relatively small longitudinal data is limited.

We demonstrate the relationship between genetic-by-age interaction in cross-sectional 
data and genetic effects on annual change in longitudinal data in the following. We also 
investigate whether integrating genetic-by-age interaction searches in relatively large 
cross-sectional data can support the identification of genetic effects on annual change.

Analytical relationship between cross‑sectional genetic‑by‑age interaction and genetics 

of longitudinal change

An analysis to identify genetic-by-age interaction effects in cross-sectional data (i.e., one 
measurement per person) requires a regression model that includes a genetic-by-age 
interaction term:

Table 1  UKB cross-sectional and longitudinal sample sizes. Shown are the number of European 
individuals in UKB with baseline and longitudinal data available on each of eight complex traits. 
The cross-sectional data values shown are based on all individuals or limited to those that attended 
the baseline visit but none of the follow-up visits. The longitudinal data values shown are based on 
individuals with data available from baseline and at least one of follow-up visits (regular follow-up 
visit; for obesity and blood pressure measurements also from the imaging and the repeated 
imaging visit). The linear effect of age (beta Age) on the outcome (adjusted for sex and 5 PCs) and 
its explained variance (R2) is shown for the baseline data. The “change per year” values reflect annual 
change of the outcome per year and are derived from the difference of the outcome between two 
visits, divided by the time between the two visits (for individuals with more than two assessments, 
we have used the difference between repeated, imaging, and repeated imaging visit with the 
baseline assessment in descending order, i.e., preferably used the regular repeated visit). A detailed 
statistical description of various subsets of the data can be found in Additional file  1: Table  S1. A 
detailed description of UKB data variables and trait transformations can be found in “Methods”

Outcome Unit Cross-sectional Longitudinal

Baseline Baseline (excl. 
long.)

Baseline Follow-up Change

N beta Age 
(R2)

N Mean 
(SD)

N Mean 
(SD)

Mean (SD) Mean (SD)

Weight kg 424,199  − 0.072 
(0.1%)

371,541 78.4 
(16.0)

52,658 77.3 
(15.1)

76.7 (15.3)  − 0.084 
(0.9)

BMI kg/m2 424,044 0.027 
(0.2%)

371,416 27.5 
(4.82)

52,628 26.7 
(4.34)

26.7 (4.49) 0.001 (0.32)

DBP mmHg 388,409 0.19 
(1.8%)

346,259 84.6 
(11.2)

42,150 83.4 
(11.0)

82.1 (11.1)  − 0.21 
(1.58)

SBP mmHg 388,400 0.78 
(10.0%)

346,256 141.9 
(20.7)

42,144 139.0 
(19.8)

143.4 (20.8) 0.54 (2.76)

PP mmHg 388,400 0.77 
(18.9%)

346,256 57.2 
(14.3)

42,144 55.7 
(13.3)

61.3 (15.1) 0.75 (2.06)

HDL-ln logn mg/
dl

371,297 0.0015 
(0.2%)

359,117 4.0 (0.26) 12,180 4.0 (0.26) 4.1 (0.26) 0.01 (0.04)

LDL mg/dl 404,900 0.79 
(3.2%)

389,885 148.2 
(35.4)

15,015 147.7 
(35.6)

151.2 (36.5) 0.94 (7.8)

TG-ln logn mg/
dl

405,326 0.0066 
(1.1%)

390,270 4.9 (0.52) 15,056 4.9 (0.51) 4.9 (0.48) 0 (0.11)
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Here, Y is the trait value of the individual in the cross-sectional data, G the allelic dos-
age, AGE is the age of the individual centered at the mean age of study individuals, and 
C is a matrix of further covariates. The estimated interaction effect size, β̂GxAge , can be 
interpreted as annual change in the genetic effect on the trait when comparing individu-
als of different age.

In comparison, a typical GWAS on annual change of a trait can be conducted based on 
data with two trait measurements over time and a linear regression model:

Here, Y1 and Y2 are the trait values of an individual at timepoint t1 and t2, respectively, 
G is the allele dosage of a genetic variant, and C a matrix of covariates at timepoint t1. 
The estimated genetic effect size, γ̂G , can be interpreted as genetic effect on annual trait 
change.

Under the assumption that t1 is a random timepoint and does not mark an interven-
tion (observational data), that there is no calendar time effect on Y, no birth cohort effect 
on G and Y, that the trait changes linearly over age, and that the covariate effects are 
independent of age, we demonstrate the equivalence γG ~ β̂GxAge (Fig. 1, Additional file 2: 
Note S1). This implies that a genetic-by-age interaction effect on Y can reflect the genetic 
effect on annual trait-change when assumptions are met. Consequently, a genome-wide 
search for genetic-by-age interaction should identify genetic associations with annual 
trait-change. However, it is also important to acknowledge that genetic-by-age inter-
action effect size estimates can potentially be confounded by various aspects, such as 

Y = β0 + βGG + βAgeAGE + βGxAgeG · AGE + βCC + ε

Y2 − Y1

t2 − t1
= γ0 + γGG + γCC + ǫ

Fig. 1  Relationship between longitudinal and cross-sectional genetic-by-age interaction GWAS models. The 
figure illustrates the similarity between genetic effects on annual trait change (estimated using longitudinal 
data from two timepoints) and genetic-by-age interaction effects (estimated from cross-sectional data) and 
states the assumptions for the equivalence. The figure demonstrates the genotype effects on the example of 
BMI for individuals with homozygous a/a (no time/age-dependency, no BMI effect) compared to individuals 
with heterozygous A/a genotypes (time/age-dependent BMI effect)
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unmodeled covariate-by-age or genetic-by-covariate interaction terms, or complex 
LD structure [7, 8]. Since it may be difficult in practice to rule out potential departure 
from the assumptions or confounding, we also seek, for genetic variants with identified 
genetic-by-age interaction, a validation of the variant’s association with change in inde-
pendent longitudinal data—which is especially important when the primary aim is to 
identify robust genetic effects on longitudinal change.

We postulate that conducting a GWAS testing for genetic-by-age interactions can be 
employed to increase power to identify genetic effects on longitudinal trait change when 
the cross-sectional sample size outnumbers the longitudinal sample size available.

Screening for genetic‑by‑age interaction improves power to identify genetic effects 

on annual trait change

To investigate whether screening for genetic-by-age interaction in cross-sectional data 
can help to identify genetic effects on trait change, we compared the power of three 
approaches (workflow of approaches shown in Fig.  2, “Methods”): (i) A GWAS for 
genetic-by-age interaction in cross-sectional sample data (“1-stage GxAge” approach). 
(ii) A GWAS for genetic-by-age interaction in cross-sectional data (same as (i)) followed 
by validation of identified variants for annual change effects in independent longitudi-
nal data (“2-stage GxAgeChange” approach). The two approaches are compared to (iii): 
A GWAS for trait change in the longitudinal data alone (“1-stage Change” approach). 
Power was computed based on analytical power formulae shown in Additional file  2: 
Note S2 (“Methods”).

Fig. 2  Approaches to identify longitudinal change effects. Shown is the workflow of three approaches 
considered to identify annual change effects: (i) the 1-stage GWAS on GxAge approach in cross-sectional 
data (blue; assuming equivalence of genetic-by-age interaction and annual change effects; involves 
genetic-by-age interaction testing at genome-wide significance, PGxAge < 5 × 10−8, and a 2-step approach 
focused on variants with genome-wide significant marginal effects, P < 5 × 10−8; then PGxAge < 0.05/Meff, 
corrected for the number of effective tests among marginally associated variants); (ii) the 2-stage GWAS 
on GxAgeChange approach that includes additional validation for annual change effects in independent 
longitudinal data (magenta); and (iii) the 1-stage GWAS on change approach in longitudinal data (green; 
involves annual change association testing at genome-wide significance, PChange < 5 × 10.−8, and a 2-step 
approach focused on variants with genome-wide significant marginal effects, PGxAge < 0.05/Meff)
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We first compared the power of the three approaches for varying effect sizes and 
for sample size configurations as in UKB (cross sectional N > 345,000 and independ-
ent longitudinal N < 55,000; proportion of longitudinal data among total sample 
size < 15%). We observed a substantial improvement in power to identify genetic 
effects on trait change by the two approaches involving “genetic-by-age interaction 
testing” compared to the “1-stage Change” approach (left panels in Fig. 3, Additional 
file 2: Fig. S1). For example, assuming a realistic genetic effect on annual trait change 
that is equal to 10% of a medium marginal effect for the trait (i.e., the genetic effect 
is modulated per year by 10%), we observe > 90% power for the “1-stage GxAge” 
approach across all traits (Table 2). Power of the two approaches involving “change” 
for this 10% effect was adequate for weight and BMI (> 77%) but extensively attenu-
ated for the other traits (< 27%, Table 2). This pattern was confirmed by calculations of 
minimum annual change effect size detectable at 80% power for the three approaches 
(Table  2): While all approaches capture realistic annual change effects (modulation 
per year ≤ 10% of a medium marginal genetic effect) for weight and BMI, only the 
“1-stage GxAge” approach captures such realistic annual change effects for the other 
traits (Table 2). The minimum effect sizes detectable by the two approaches involv-
ing “change” were unrealistically high (e.g., 0.46 (mg/dl)/year/allele for the “1-stage 
Change” approach on LDL-C, which refers to modulation per year that is equivalent 
to 58% of a medium marginal genetic effect).

This UKB scenario with the proportion of longitudinal data relative to total sample 
size (f) being only up to 15% is rather unique. To generalize to studies with higher 
f, we compared the power of the three approaches for varying f while keeping the 
total sample size constant (Ntotal = Ncross + Nlong, trait-specific) and keeping the annual 
change effects constant (at 10% of a medium marginal genetic effect). We expected a 
“kipping point” for f where the “1-stage GxAge” approach lost superiority in power 
against the “1-stage Change” approach. We observed trait-dependent kipping points 
at f = 25%, 75%, and 65% for BMI, LDL-C, or pulse pressure (Fig. 3, Additional file 2: 
Fig. S1). For UKB sample size, power of the “1-stage Change” approach was depre-
cated compared to genetic-by-age interaction approaches for all traits (red dotted 
lines in Fig. 3 and Additional file 2: Fig. S1).

Interestingly, and a bit counterintuitive at first glance, equal sample size for cross-
sectional and longitudinal data (f = 0.5, Ncross = Nlong = N, number of measurements N 
and 2*N, respectively) yielded superior power for the cross-sectional “1-stage GxAge” 
approach compared to longitudinal “1-stage Change” approach for blood pressure 
and lipid traits (e.g., for pulse pressure 85% versus 59%, for LDL-C 82% versus 12%), 
but reduced power for obesity traits (e.g., for BMI 92% versus 99%; Fig. 3, Additional 
file  2: Fig. S1). This trait-dependent pattern was observed despite, across traits, the 
same significance level, similar sample size, and similar genetic-by-age interaction 
effect size relative to the phenotypic variance (i.e., similar outcome variance explained 
by the genetic-by-age interaction, R2

GxAge of ~ 0.01%, Table 2). However, a driving fac-
tor for power in longitudinal analyses is also the variance of annual outcome change 
explained by the genetic effect (R2

Change). Indeed, we observed a smaller R2
Change for 

pulse pressure and LDL-C (0.009% and 0.004%, respectively) compared to BMI and 
weight (R2

Change ~ 0.04% for both traits; Table 2).
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To explore the reasons for these trait-dependent power differences further, we com-
pared power of a genetic-by-age interaction test and an annual change association test in 
a more controlled scenario (fixed parameters of Ncross = Nlong = 200 K, alpha = 5 × 10−8, 
allele frequency AF = 0.3, betaGxAge = betaChange). We demonstrate that the power of the 

Fig. 3  Power to identify genetic-by-age interaction and longitudinal change effects. Shown are power 
curves for genetic-by-age interaction and annual change effects on A BMI, B LDL-C, and C PP. Power is 
shown for the three approaches: the 1-stage GWAS on GxAge approach in cross-sectional data (blue), the 
2-stage GWAS on GxAgeChange approach that includes additional validation for annual change effects 
in independent longitudinal data (magenta), and the 1-stage GWAS on change approach in longitudinal 
data (green). For each trait, the left panel shows power over varying effect size (varied from zero to 25% of a 
median marginal genetic effect on the trait; purple vertical dotted line denotes 10% of the medium marginal 
effect) while keeping cross-sectional and longitudinal sample sizes constant at UKB sample sizes for the trait 
(Table 1). The right panel shows power of varying longitudinal-to-total sample size ratios (f), while keeping 
total sample size constant at the UKB trait sample size (Table 1; Nlong = f*Ntotal; Ncross = Ntotal − Nlong; the red 
vertical dotted line denotes f as given in UKB for the respective trait) and keeping the genetic effect constant 
at the 10% medium marginal effect size (purple dotted line in the left panel). Power was calculated for an 
allele frequency of 30%, based on analytical formulas given in Additional file 2: Note S2 and assumptions 
given in “Methods.” Power computations for the remaining traits are shown in Additional file 2: Fig. S1
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genetic-by-age interaction test is larger than power of the annual change test, as long as [
2 ∗ Var

(
Age

)]
>

[
age2diff /(1− rY 1,Y 2)

]
 (Additional file  2: Note S3). This can be inter-

preted intuitively: (i) the larger the age range and thus the age variance in the cross-sec-
tional data, the larger the power of the genetic-by-age interaction test, (ii) the longer the 
follow-up time (agediff) in the longitudinal data and the closer rY1,Y2 to 1 (i.e., little techni-
cal measurement error or intra-individual variability), the larger the power of the annual 
change test. This explains the observed trait-specific pattern (Additional file 1: Table S2): 
the power of the annual change test compared to the genetic-by-age interaction test (i) is 
superior for BMI due to relatively large follow-up time and high correlation 
(agediff ~ 7.5 years, rY1,Y2 ~ 0.91), (ii) inferior for pulse pressure due to the lower correla-
tion (agediff ~ 7.5 years, rY1,Y2 ~ 0.65), and (iii) near zero for LDL-C due to shorter follow-
up time and lower correlation (agediff ~ 4.3 years, rY1,Y2 ~ 0.62). Thus, the genetic-by-age 
interaction test can be particularly helpful for traits where measurement error or intra-
individual variability is high and when follow-up length is short.

In summary, our GWAS involving genetic-by-age interaction testing in cross-sec-
tional data has reasonable power to identify realistic genetic-by-age interaction effects 
for all traits; the 2-stage approach with additional validation of the genetic effect on 
annual change in independent longitudinal data has substantially larger power than 
the GWAS for change in longitudinal data alone. The power of the GWAS for change 
alone is limited in this UKB data due to the short follow-up time. We thus applied the 
“1-stage GxAge” and the “2-stage GxAgeChange” approach to the eight traits in UKB 
and describe the results in the following section.

Genome‑wide search identifies 44 significant genetic‑by‑age interaction

To identify genetic-by-age interactions for the eight traits, we analyzed the cross-sec-
tional baseline data of UKB excluding individuals with longitudinal data for the respec-
tive trait (“Methods,” Additional file 1: Table S3). Across the eight traits, we identified 
a total of 44 significant genetic-by-age interaction effects (PGxAge < 5 × 10−8, or PGx-

Age < 0.05/Meff among variants with marginal P < 5 × 10−8; d > 500 kb, r2 < 0.01 to identify 
independent index variants per trait; Fig. 4, Additional file 1: Table S4). The 44 genetic-
by-age interaction index variants mostly pertained to three traits: 11 interactions were 
identified for weight or BMI (located at 7 loci; including loci near APOE, TMEM18, 
and FTO) and 26 for pulse pressure (26 loci; Fig. 5, Additional file 2: Fig. S2). Fewer loci 
were identified for triglycerides (1 locus, near APOE), diastolic (4 loci; near IGFBP3, 
SDCCAG8, FGF5, and LILRP2), and systolic blood pressure (2 loci, near PIK3CG and 
ABHD17C). No significant genetic-by-age interactions were identified for HDL-choles-
terol and for LDL-cholesterol.

As expected, given the correlation between some of the traits (data not shown), there 
was overlap of identified loci between traits (i.e., same, or correlated index variants were 
identified by two or more traits). For example, the APOE index variant rs429359 was 
identified for significant genetic-by-age interaction for BMI, weight, and triglycerides 
(Additional file  1: Table  S4). Overall, the 44 genetic-by-age interaction index variants 
pertained to 36 independent loci (d > 500 kb, r2 < 0.01 between index variants, Additional 
file 2: Fig. S3). Gene prioritization based on DEPICT [9] and FUMA [10] highlighted 83 
genes at these loci (Additional file 1: Table S5). Clearest evidence was found for 11 genes 
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that were prioritized by both methods at genetic-by-age interaction loci for pulse pres-
sure: CDH13, CDKN1A, DOT1L, EFEMP1, FBN1, FBXO32, IGFBP3, KIAA1462, MRC2, 
SPSB1, TCF7L1.

The identified genetic-by-age interaction effects mostly overlapped with marginal 
effect loci for the respective traits, i.e., 40 of the 44 genetic-by-age interaction index 
variants showed genome-wide significant marginal effects on the respective trait here 
(marginal P < 5 × 10−8, Additional file  1: Table  S4, Additional file  2: Fig. S4). This is in 
line with the idea that interaction effects are among marginal effects when the trait-
deteriorating allele of the marginal effect is the trait-deteriorating allele independent of 
age (no cross-over). Vice versa, starting from trait-specific genome-wide significant mar-
ginal effect lead variants (marginal P < 5 × 10−8, d > 500 kb, Additional file 1: Table S6), 
we observed a significant intensification of effects with increasing age for systolic blood 
pressure and pulse pressure, and a significant attenuation of effects for weight, BMI, and 
LDL-cholesterol (enrichment Pbinom < 0.05/8, Bonferroni-corrected for 8 traits, Table 3). 
On average, the yearly modulation of genetic effect size ranged between 3.2 and 4.8% of 
the median marginal effect size across traits. The strongest enrichment was observed 

Fig. 4  Cross-sectional genetic-by-age interaction GWAS and longitudinal GWAS results for 8 complex 
traits. For the eight traits, shown are the quantile–quantile (QQ) plots for the genetic-by-age interaction 
P values (blue; testing in cross-sectional UKB data excluding individuals with longitudinal data available; 
approx. sample size shown in figure) and for the association P values for annual change (green; testing in 
longitudinal UKB data; approx. sample size shown in figure). Indicated in blue circles are the number of 
significant genetic-by-age interaction loci (d > 500 kb and r2 < 0.01) identified in the cross-sectional data 
(PGxAge < 5 × 10−8, or by the 2-step approach focused on marginal effects, P < 5 × 10−8; then PGxAge < 0.05/Meff). 
Green are QQ plots for the annual trait change association P values from the respective longitudinal UKB data
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Fig. 5  Manhattan plots of genetic-by-age interaction for BMI, LDL-C, and pulse pressure. The figure shows 
the genome-wide Manhattan plots of genetic-by-age interaction P values for A BMI, B LDL-C, and C 
pulse pressure. These are based on cross-sectional data from UKB excluding individuals with longitudinal 
data (cross-sectional N > 340,000). Significant genetic-by-age interaction loci (PGxAge < 5 × 10−8; or 2-step 
significant: marginal P < 5 × 10−.8 and PGxAge < 0.05/Meff) are colored in blue, green, and magenta. The different 
coloring indicates association of the index variant with annual trait-change in independent longitudinal 
data from UKB (longitudinal N up to 52,000): blue indicates lack of annual trait-change association (1-sided 
PChange ≥ 0.05), green indicates nominal-significant, directionally consistent annual trait-change effects 
(1-sided PChange < 0.05), and magenta indicates Bonferroni-corrected significant, directionally consistent 
annual trait-change effects (1-sided PChange < 0.05/MGxAge, corrected for the number of significant 
genetic-by-age interaction loci per trait)
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for pulse pressure where intensified effects were observed for 101 (56.4%) of the 179 
marginally associated region lead variants. This trait-specific enrichment provides the 
degree of the trait’s genetics that is age-dependent and its direction.

In summary, we identified a total of 44 genetic-by-age interactions mapping to 36 
independent loci across the eight traits with the most interaction loci being identified for 
BMI and pulse pressure and only very few for lipid traits.

Sensitivity analyses for identified 44 genetic‑by‑age interaction variants

We explored potential confounding by birth cohort effect for the identified genetic-by-
age interaction effects on the respective trait. While this can be explored by adjusting 
for birthyear, genetic-by-birthyear, or age-by-birthyear interaction in theory, this is often 
impossible in practice when age and birthyear are highly correlated (collinearity). This is 
the case in UKB (r = − 0.99; “Methods”). For the 44 variants identified with genetic-by-
age interaction, we attempted adjusting for birthyear and found no impact on genetic-
by-age interaction effects, but this was not surprising as this adjustment just reflected 
the adjustment for age; we also evaluated the genetic variant association with birthyear, 
but again this was expected to be equivalent to the association with age (Additional 
file 1: Table S7).

Confounding of the genetic-by-age interaction by birthyear as well as age-dependent 
selection or survival would imply an association of the genetic variant with age. Among 
the 44 identified variants, we found only the APOE variant rs429358 associated with 
age (PGAge = 4.6 × 10−5, Additional file 1: Table S7). Since the rs429358 allele that is less 

Table 3  Proportion and directionality of genetic-by-age interaction effects among marginal 
associated regions. The table shows the number of marginal associated regions (d < 500  kb, 
PMarginal < 5 × 10−8) for the eight traits identified in UKB (using cross-sectional baseline data excluding 
any individual with longitudinal data available) and the median marginal effect sizes among the 
region lead variants (trait unit per allele). For the marginal lead variants with nominal significant 
genetic-by-age interaction effects (PGxAge < 0.05), the table shows their proportions among all 
marginal lead variants, their directions (i.e., whether marginal effects are intensified or attenuated 
with age), the directional enrichment (2-sided binomial test for enrichment comparing intensified 
vs. attenuated variants), and the median genetic-by-age interaction effects. Significant directional 
enrichments are marked in bold (binomial P < 0.05/8)

Trait NNolong Number 
of 
marginal 
regions

Median 
bMarginal

Number of nominal sig. GxAge 
regions (% among marginal regions)

Directional 
enrichment 
Pbinom

Median 
bGxAge (% 
median 
bMarginal)All Intensified Attenuated

Weight 371,541 248 0.29 42 (16.9%) 3 (1.2%) 39 (15.7%) 5.6E − 09 0.011 (3.8%)

BMI 371,416 212 0.093 32 (15.1%) 1 (0.5%) 31 (14.6%) 1.5E − 08 0.0036 
(3.8%)

DBP 346,259 202 0.22 36 (17.8%) 16 (7.9%) 20 (9.9%) 0.62 0.0089 
(4.0%)

SBP 346,256 182 0.40 34 (18.7%) 29 (15.9%) 5 (2.8%) 3.9E − 05 0.015 (3.7%)

PP 346,256 179 0.28 102 
(57.0%)

101 
(56.4%)

1 (0.6%) 4.1E − 29 0.014 (4.8%)

HDL-ln 359,117 236 0.0051 22 (9.3%) 15 (6.4%) 7 (3.0%) 0.13 1.6E − 04 
(3.2%)

LDL 389,885 218 0.77 28 (12.8%) 5 (2.3%) 23 (10.6%) 9.1E − 04 0.025 (3.2%)

TG-ln 390,270 211 0.011 20 (9.5%) 5 (2.4%) 15 (7.1%) 0.041 4.1E − 04 
(3.6%)
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frequent in older age (C allele) is well-known for increasing risk of Alzheimer [11] and 
early mortality [12], it is perceivable that this variant’s association with age is explained 
by decreased study participation among Alzheimer patients (selection) or decreased sur-
vival rather than a birth cohort effect. While the observed APOE genetic-by-age interac-
tion on BMI, weight, and triglycerides is adjusted for age (i.e., removing age-dependent 
selection or survival effects at least in part), there might be residual confounding. Our 
sensitivity analyses to identify genetic variant association with age were reasonably 
powered (> 95% to identify APOE effect on age of 0.12 years/allele; minimal detectable 
effect size at 80% power = 0.09  years per allele, explains ~ 0.005% of the age variance; 
N = 350,000, alpha = 0.05/44, AF = 30%).

Longitudinal validation of genetic‑by‑age interaction loci for annual change effects

To preclude departure from assumptions, we sought validation of the 44 identified vari-
ants for their association on trait change in independent longitudinal data from the UKB 
(longitudinal N up to 52,628, Table 1).

Among the 44 genetic-by-age interaction variants, we observed an enrichment of 19 
nominal-significant and directionally consistent genetic effects on annual change of the 
respective trait in the longitudinal data (1-sided Pchange < 0.05; enrichment P = 8.0 × 10−14, 
Table 4, Additional file 1: Table S4). These included seven variants that were significant 
for trait change at a Bonferroni-corrected alpha level (1-sided Pchange < 0.05/MGxAge, 
Bonferroni-corrected for a trait-level number of genetic-by-age interaction loci, MGxAge; 
Table  4, Additional file  1: Table  S4): two for BMI-change (near APOE and TMEM18; 
longitudinal N = 52,628), three for weight-change (near APOE, TMEM18, and TFAP2B; 
longitudinal N = 52,658), and two for pulse pressure change (near FBN1 and IGFBP3; 
longitudinal N = 42,144). Only the APOE variant for BMI and weight would have been 
identified by a 1-stage GWAS on change in the longitudinal data alone (APOE: weight 
PChange = 4.5 × 10−8 and BMI PChange = 3.2 × 10−7, i.e., 2-step significant among marginal 
associated variants, Additional file 1: Table S4). The other five change associations were 
identified only after pre-screening for genetic-by-age interaction in the cross-sectional 
data but would have been missed in an analysis using longitudinal data only. Some lack 
of validation for other genetic-by-age interaction loci might be attributed to power 
(Table 2, Fig. 3, Additional file 2: Fig. S1): for example, we would require ~ 340,000 indi-
viduals with longitudinal data on pulse pressure change to successfully validate (at 80% 
power) a median observed genetic-by-age interaction effect of 0.021 mmHg/year/allele.

Given the mathematical similarity between genetic-by-age interaction and genetic 
effects on change, we were interested in whether this similarity was also observable 
empirically in terms of effect sizes. We compared beta-estimates of the genetic-by-age 
interaction and the genetic effect on change for the 44 identified variants: as expected, 
the effect sizes of the seven variants validated for trait change at a Bonferroni-corrected 
alpha level were highly comparable (including the APOE variant), as were the effect sizes 
for the 12 additional variants with nominal significance (Fig.  6). Larger longitudinal 
data would have been required to show the equivalence of effect sizes for all 44 variants 
empirically.

In summary, our approach to identify variants with genetic-by-age interaction in 
cross-sectional data with validation for effects on change in independent longitudinal 
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data successfully identified annual change loci that would have been missed by a search 
in longitudinal data alone. Observed annual change effect sizes aligned well with the 
respective genetic-by-age interaction effect sizes. Yet, power to identify annual change in 
UKB alone was hampered by the relatively low longitudinal sample size in UKB.

Genetic‑by‑age interactions highlight trait‑specific biological aging processes

Among the eight traits studied, most genetic-by-age interactions were identified for obe-
sity (BMI or weight; 7 loci) and pulse pressure (26 loci). Only few were identified for 
other blood pressure traits or lipids.

The extent of genetic-by-age interaction might tell something about underlying 
mechanisms: the lack of genetic-by-age interactions for lipid traits in this data means 
that genetic effects on lipids remain relatively constant during the age of 40 to 70 years, 
which suggests that the genetic variant causes a genotype-dependent offset early on that 
remains constant in middle-aged adulthood. To visualize the age-dependency of genetic 
effects on BMI and pulse pressure that we identified with genetic-by-age interaction, 
we estimated the genetic effects at 40, 55, and 70 years of age (Fig. 7, Additional file 1: 
Table S4).

For BMI, the genetic effects were attenuated with increased age towards a zero genetic 
effect for 5 of the 6 variants (all except APOE; enrichment P = 0.22, Fig. 7A). As stated 
above, the APOE variant, rs429358, was associated with age, which might be explained 
by age-dependent selection or survival effects due to this variant’s association with Alz-
heimer’s disease and early mortality.

For pulse pressure, the genetic effects were intensified for 24 of the 26 variants 
(enrichment P = 1.0 × 10−5, Fig.  7B). The pulse pressure increasing alleles were 

Fig. 6  Comparison of genetic-by-age interaction and annual change effect sizes. Shown is a comparison 
of genetic-by-age interaction effect sizes with annual change effect sizes for the change-validated loci 
A six BMI-loci and B 26 pulse pressure loci. The loci displayed significant genetic-by-age interaction in 
cross-sectional data (UKB, excluding individuals with longitudinal data available; PGxAge < 5 × 10−8 or 
PGxAge < 0.05/Meff for variants with marginal P < 5 × 10−8; Bonferroni-corrected at trait-level for the number 
of effective tests estimated by PCA, Meff). Loci that further showed significant genetic effects on annual 
trait change in independent longitudinal data are colored magenta (all at 1-sided Pchange < 0.05/MGxAge; 
Bonferroni-corrected at trait-level for the number of genetic-by-age interaction loci, MGxAge). The effect 
directions of the variants were aligned to marginally trait-increasing alleles. Solid circles indicate variants with 
genome-wide significant marginal effects (marginal P < 5 × 10.−8)
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enriched for nominal significant effects on increased pulse wave arterial stiffness 
index in UKB (enrichment P = 0.04, N = 118,469, GWAS summary statistics from 
the Neale lab, https://​www.​neale​lab.​is/​uk-​bioba​nk, Additional file  1: Table  S8). The 
observed genetic-by-age interaction effects for pulse pressure were not confounded 
by genetic-by-BMI interaction in sensitivity analyses (Additional file  1: Table  S8). 
We conducted tissue-specific expression analyses with FUMA and observed signifi-
cantly differentially expressed genes in tibial arteries and in aorta arteries (FDR < 5%, 
Fig. 8A and B, Additional file 1: Table S10). In terms of direction, the enrichment in 
arteries was particularly observed for upregulated gene expression (Additional file 1: 
Table S10, Additional file 2: Fig. S5). A confirmatory pattern was observed by enrich-
ment analysis with DEPICT, which yielded significant enrichment of gene expres-
sion effects in 16 tissues and cell types including blood vessels, arteries, veins, and 
endothelial cells (tissue enrichment FDR < 5%, Fig. 8C, Additional file 2: Fig. S6, Addi-
tional file  1: Table  S11). Strikingly, the enrichment in relevant tissues could not be 
found in complimentary enrichment analyses that were based on 26 pulse pressure 
loci without genetic-by-age interaction (i.e., associated but no genetic-by-age inter-
action; PMarginal < 5 × 10−8 and PGxAge > 0.48; Fig. 8B and C). This distinction was con-
firmed by direct variant-to-tissue mapping based on chromatin activity (FORGE2 
[13]), which yielded a significant enrichment of blood vessel cells for the 26 genetic-
by-age interaction pulse pressure loci (4 out of 14 blood vessel cells were mapped 
with nominal significance, binomial enrichment P = 0.004) but no enrichment for the 
26 loci without genetic-by-age interaction (Additional file  1: Table  S12). Together, 
these results underscore the biological relevance of age as intensifying modulator in 
pulse pressure genetics and biology.

In summary, we found an interesting distinction of traits based on their observed 
genetic-by-age interactions: those with intensified effects over age implicating aging 

Fig. 7  Direction of genetic-by-age interactions for BMI and pulse pressure. For the variants with significant 
genetic-by-age interaction, the figures show the genetic effect estimates on A BMI and B pulse pressure, 
at 40, 55, and 70 years of age. The age-specific genetic effects were based on the observed genetic main 
and genetic-by-age interaction effect sizes from the genetic-by-age interaction regression model and by 
substituting ages 40, 55, and 70 into the model. The effect directions were aligned to trait-increasing alleles

https://www.nealelab.is/uk-biobank


Page 17 of 26Winkler et al. Genome Biology          (2024) 25:300 	

processes of arterial stiffness (i.e., pulse pressure), those with attenuated effects over 
age due to an increasing impact of other environmental factors (i.e., BMI and weight), 
and those with relatively constant genetic effects over age (lipids).

Discussion
In this work, we showed that genetic-by-age interaction analyses in cross-sectional data 
can successfully help identify genetic effects on longitudinal change. Using cross-sec-
tional UKB data for > 370,000 individuals for eight complex traits, our GWAS of genetic-
by-age interaction identified 44 significant variants across 36 independent loci. We 
observed a biological distinction of traits into those with plenty of identified genetic-by-
age interactions, including obesity (7 genetic-by-age interaction loci for weight and BMI; 
6 being attenuated with age) and pulse pressure (26 loci; 24 being intensified with age) 
versus those with very few or no genetic-by-age interactions (other blood pressure traits, 
lipid traits). Considering a broader spectrum of marginally associated trait variants con-
firmed these observed proportions and directions, with > 50% of pulse pressure variant 
effects being intensified, and ~ 15% of obesity variant effects being attenuated with age. 
Our results underscore the relevance of genetic-by-age interaction as being interpret-
able as genetic effects on trait change. They also highlight the biological implications of 
distinguishing between traits where their genetic make-up is, partly, age-dependent (i.e., 
genetic impact attenuated or intensified with age) or constant over age.

For obesity traits, the genetic effects on BMI or weight were attenuated with increased 
age towards zero for all variants (near TMEM18, TFAP2B, EFR3B, SEC16B, FTO, and 

Fig. 8  Tissue-specific enrichment of gene expression at pulse pressure loci. For the 26 genetic-by-age 
interaction loci (PGxAge < 5 × 10−8 or significant in the 2-step approach, Additional file 1: Table S3), shown 
are A the clustered gene expression heatmap for 54 GTEx (v8) tissue types for the FUMA mapped genes 
(value shown is average expression per label, log2 transformed), B results from tissue-specific differentially 
expressed gene set enrichment analyses by FUMA (upper bars; significant enrichments highlighted in 
red, FDR < 5%), and C enrichment of gene expression analysis results by DEPICT for selected tissues and 
cell-types (upper bars; significant enrichments highlighted in red, FDR < 5%). For comparison, shown in B 
and C, respectively, are FUMA and DEPICT tissue-specific enrichment analysis results for 26 pulse pressure 
loci without genetic-by-age interaction (lower bars in B, C; i.e., PMarginal < 5 × 10.−8 and PGxAge > 0.48, Additional 
file 1: Table S5). Detailed FUMA results are shown in Additional file 1: Table S9. Results on all tissues by DEPICT 
are shown in Additional file 1: Table S10 and Additional file 2: Fig. S6
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additionally, HMGN4 for weight) except for the variant near APOE. This pattern was 
consistent with previous work from the GIANT consortium that identified 11 loci with 
smaller genetic effect sizes on BMI among older compared to younger adults using 
age-stratified GWAS meta-analyses on cross-sectional data [14]. Four of the 11 loci by 
GIANT were validated by our analyses of BMI-change using independent longitudinal 
data from UKB (near TMEM18, EFR3B, SEC16B, and FTO). Reduced genetic effect sizes 
with increased age reflect a plausible biological pattern for BMI genetics that is prone 
to environmental effects [15, 16]: for example, effects of FTO are impacted by physical 
activity, alcohol consumption, or sleep duration [17], TMEM18 by drinking habits and 
physical activity [18], and SEC16B by physical activity [19]. An attenuation of the genetic 
BMI effects by increased age is in-line with an accumulation of environmental impact on 
BMI that diminishes the genetic BMI effects. Interestingly, the identified variants map to 
genes that are likely acting on BMI through adipose tissue function, energy expenditure, 
or lipid metabolisms [20–24]. In contrast, variants known to exhibit their effects on BMI 
in the brain through appetite regulation, such as variants in another well-studied BMI 
locus near MC4R [25, 26], showed no significant genetic-by-age interaction, which may 
suggest that they are less prone to environmental impacts.

For pulse pressure, we identified a striking enrichment of 26 loci with significant 
genetic-by-age interactions and a clear picture in terms of the interaction effect direc-
tions. Only the locus near PIK3CG was mentioned before for potential age-depend-
ent effect on pulse pressure, however only with nominal significance despite multiple 
testing [27]. At 24 of the 26 variants, the genetic effects on pulse pressure were clearly 
increased with age; two were undecided. The 26 loci were also enriched for upregulated 
gene expression effects in arteries and blood vessel tissues consistently by FUMA and 
DEPICT analyses, which supports them to pinpoint relevant pulse pressure biology. 
Gene prioritization analyses by DEPICT and FUMA yielded 11 genes that were prior-
itized by both methods: CDH13, CDKN1A, DOT1L, EFEMP1, FBN1, FBXO32, IGFBP3, 
KIAA1462, MRC2, SPSB1, TCF7L1. These include interesting candidates such as IGFBP3 
(insulin-like growth factor binding protein-3) that has previously been reported for its 
association with ankle brachial index in a cohort of elderly [28] or CDH13 (cadherin 13), 
which is a known regulator of vascular wall remodeling [29], and FBN1 (fibrilin-1) that 
is known for its impact on arterial stiffness [30]. The results support pulse pressure as 
aging index for arterial stiffness [31] and highlight the relevance of the genetic-by-age 
interaction loci for biological mechanism that affect accelerated arterial stiffness, which 
is not existent at younger age but increases with ascending age.

We demonstrated that genetic-by-age interaction can be equivalent to the genetic 
effect on trait change under certain assumptions. These assumptions are random base-
line timepoint, linear effect of age on trait, negligible calendar time and birth cohort 
effect, and constant effects of other covariates over age. In case of relevant non-constant 
covariate effects like sex-by-age interaction on the trait, stratified analyses by sex can be 
conducted. In case of a non-linear effect of age on trait, trait transformation or adding 
age2 to the model can improve the linear model fit. The assumptions can be compro-
mised by birthyear effects in the cross-sectional data as well as age-dependent selection 
or survival. While birthyear effects can be adjusted for, in theory, it is almost impossible 
to dissect birthyear effects from age effects in practice when birthyear and age are highly 



Page 19 of 26Winkler et al. Genome Biology          (2024) 25:300 	

correlated. This is the case in UKB due to the short time span of recruiting. We show the 
similarity of effect sizes for genetic-by-age effects and variant’s effect on trait change also 
empirically—for the variants that were validated in longitudinal data. This supports the 
“2-stage GxAgeChange” approach to yield robust evidence for genetic variant effects on 
trait change. An indicator for birthyear, survival, or selection effects on a genetic variant 
is the genetic variant’s effect on age. We found none of the identified 44 variants associ-
ated with age, except for the APOE variant which is known for association with Alzhei-
mer’s and early mortality [32–34]. The APOE variant’s association with age may thus be 
explained by age-dependent selection or survival rather than a birthyear effect. We rec-
ommend the “2-stage GxAgeChange” approach together with a test of identified genetic 
variants for association with age.

We showed that the power to identify genetic effects on change was increased by pre-
screening on genetic-by-age interaction in cross-sectional data in this UKB dataset, 
where the sample size of the cross-sectional data substantially exceeds the longitudinal 
data (internal data pre-screening). The “2-stage GxAgeChange” can also be applied using 
external data for pre-screening, like genetic-by-age interaction analyses via meta-analy-
ses followed by testing for trait change in an independent longitudinal study.

Our relatively simple 2-stage approach of pre-screening for genetic-by-age interaction 
in cross-sectional data and testing of genetic association with trait change in longitudi-
nal data successfully identified longitudinal change effects in this UKB dataset. Among 
the 44 genetic-by-age interactions observed on the cross-sectional data, 19 were vali-
dated for directionally consistent and nominal significant effects on annual change of 
the respective trait in up to 50,000 independent individuals with longitudinal data from 
UKB. These included seven associations for trait change that were significant at a Bon-
ferroni-corrected significance level: two for BMI-change (near APOE, TMEM18), three 
for weight-change (near APOE, TMEM18, and TFAP2B), and two for pulse pressure 
change (FBN1 and IGFBP3). For obesity, TMEM18 and TFAP2B were identified here 
for the first time as loci for BMI or weight change. They were missed by a longitudinal 
GWAS using electronical health records (EHRs) from UKB despite larger longitudinal 
sample size of ~ 170,000 and inclusion of multiple timepoints per person [4]. For pulse 
pressure, we could not identify a previous longitudinal GWAS, so that our identified 
loci are the first reports of genetic variants associated with longitudinal pulse pressure 
change.

Some limitations need to be acknowledged. First, we assumed a linear age effect on 
the trait and might have some non-linear age component in the trait unaccounted for; 
also, we searched for genetic variants associated with linear trait change over age and 
thus might have missed genetic variants with non-linear change. Second, we have only 
considered assessment center data from UKB with a limited number of individuals with 
two longitudinal timepoints per individual (15  K to 50  K, trait-dependent). Third, we 
analyzed annual change of a trait based on two timepoints per individual using standard 
linear regression; linear mixed models (LMMs) including random effects would allow 
for analyzing multiple longitudinal timepoints per individual. In UKB, multiple trait 
timepoints per person would generally be accessible from EHRs [35]. While incorpo-
rating LMMs and data on multiple timepoints will improve power of the longitudinal 
data analysis itself, their implementation in biobank-scale GWAS is computationally 
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more intense and the data preparation more challenging [35]. Another limitation of our 
study is the focus on the European population and to metabolic traits. Yet, the 2-stage 
approach is readily applicable to non-European populations and to other traits [36]. 
Finally, we have used chronological age that may not necessarily reflect true biologi-
cal age [37]. Future work may incorporate novel approaches to estimate true biological 
age based on OMICs data [38] and use this as covariate and as interaction variable to 
improve the identification and characterization of age-dependent genetics of complex 
traits. Biological aging can differ from chronological aging at the molecular level. Age 
clocks based on telomere length and age-dependent DNA methylation CpG sites reflect 
this process [39]. Also, the aging immune system, the balance of antibody-producing 
cells and T cells is strongly age-dependent and has an impact on the ability to respond to 
several infections [40]. Thus, any observed genetic-by-age interaction could potentially 
be explained by genetic-by-CpG interactions or be linked to mechanisms that are related 
to the age-dependent immune system. Our results emphasize the importance to account 
for age-dependency in several aspects of GWAS, such as fine mapping or heritability 
estimation, and may open the route to future methods developments.

Our results suggest that genetic-by-age interaction might be underacknowledged 
regarding their potential to understand biology and aging across traits.

Conclusions
In summary, we demonstrate that genetic-by-age interaction testing in cross-sectional 
data can help identify genetic association with trait change in longitudinal data. Our 
work highlights obesity and pulse pressure as traits that have a substantial component 
of genetic-by-age interaction in cross-sectional data. These can highlight differential bio-
logical processes that are age-related versus constant over age. In contrast, lipid traits 
showed little evidence for genetic-by-age interactions. This might also indicate that we 
can expect more from longitudinal GWAS for traits related to obesity and pulse pressure 
rather than for lipids. The observation that genetic effect sizes on pulse pressure become 
larger by older age suggests that the identified loci predispose to accelerated aging pro-
cesses. This highlights the relevance of considering age as potential modulator of genetic 
effects to help understand mechanisms of aging.

Methods
UK Biobank

The UKB included approximately 500,000 individuals from the UK aged 40–69  years. 
The samples were genotyped based on the Affymetrix UKB Axiom Array and then 
imputed to the Haplotype Reference Consortium and the UK10K haplotype resource 
[41]. We restricted our analysis sample to individuals of European population using the 
population definitions generated by the PAN-UKB project (https://​pan.​ukbb.​broad​insti​
tute.​org/).

Phenotype definitions

We conducted genome-wide association and genetic-by-age interaction analyses for 
eight traits. Five of the traits were available at four UKB visits: weight, BMI, diastolic 
blood pressure (DBP), systolic blood pressure (SBP), and pulse pressure (PP). The three 

https://pan.ukbb.broadinstitute.org/
https://pan.ukbb.broadinstitute.org/
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other traits were only available from the baseline and the first repeat visit: high-density 
lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and tri-
glycerides. For weight and BMI, we used the UKB variables 21,002 and 21,001 directly, 
respectively. For both DBP and SBP, two measurements were available at each visit (UKB 
variables 4079 and 4080). We calculated the mean of the two variables, respectively, 
and then added 10 mmHg to the mean DBP and 15 to the mean SBP value of an indi-
vidual if the person took anti-hypertensive medication indicated by self-report (“Blood 
pressure medication” in UKB variable 6177) or by medication Anatomical Therapeutic 
Chemical (ATC) code (“C02,” “C03,” “C07,” “C08,” or “C09” in UKB variable 20,003). PP 
was calculated as the difference between the medication adjusted SBP and DBP values 
(PP = SBP − DBP). The three traits DBP, SBP, and PP were winsorized at ± 6 standard 
deviations. For the lipid traits of HDL-C, LDL-C, and triglycerides, we used the UKB 
variables 30,760, 30,780, and 30,870, respectively, for the traits measured in mmol/l. We 
multiplied HDL-C and LDL-C by 38.67 and triglycerides by 88.57 to obtain values in 
mg/dl. We applied a natural log-transformation to the derived HDL-C and triglyceride 
values to obtain symmetric outcomes. The LDL-C values were not subject to log trans-
formation but were divided by 0.7 if the person took cholesterol lowering medication 
indicated by self-report (“Cholesterol lowering medication” in UKB variable 6177) or 
by medication ATC code (“C10” in UKB variable 20,003). The natural log-transformed 
HDL-C and triglyceride values and the medication-adjusted LDL-C values were win-
sorized at ± 6 standard deviations (SD).

Longitudinal annual change

We defined longitudinal annual outcome change for the traits as follows: For traits 
with more than two measurements available (BMI and blood pressure traits), we used 
the first available follow-up visit value (e.g., if data is available from “first repeat,” then 
we use “first repeat”; if not we try to use the “imaging” visit and if not, then finally the 
“repeat imaging” visit was used) and subtracted the baseline value to obtain the absolute 
difference between the follow-up and the baseline visit. We further divided by the time 
between visits to obtain annual change of the outcome. For lipid traits, we always use the 
repeat and the baseline visit to obtain annual change.

Three approaches to search for annual change effects

We consider three approaches to identify annual change effects: (i) The genome-wide 
screen for genetic-by-age interaction in cross-sectional data. This approach consists of 
a genetic-by-age interaction test genome-wide (judging significant interaction by PGx-

Age < 5 × 10−8) and a genetic-by-age interaction testing focused to variants with genome-
wide significant marginal effects (P < 5 × 10−8; then PGxAge < Meff, with Meff being the 
number of effective tests among marginally associated variants estimated from a prin-
cipal component analysis) [42]. The significant genetic-by-age interaction variants are 
clumped to derive genetic-by-age interaction loci (d > 500 kb; r2 < 0.01) and index vari-
ants are selected (i.e., variant with smallest genetic-by-age interaction P value among 
variants at a locus). (ii) The genome-wide screen for genetic-by-age interaction in cross-
sectional data (same as (i)) with additional validation association testing for annual trait 
change effects in independent longitudinal data (using a Bonferroni-correction based on 
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the number of identified genetic-by-age index variants). (iii) The genome-wide screen 
for annual change effects in longitudinal data. Like the first approach, this approach 
consists of an annual change association test genome-wide (judging significant change 
effects by PChange < 5 × 10−8) and an annual change association test focused to variants 
with genome-wide significant marginal effects (PChange < 0.05/Meff).

Power computations

We generally assumed unrelated individuals, an additive genotype model with a fixed 
allele frequency of 30%, and UKB-based phenotype and sample size configurations 
(Table  1, Additional file  1: Table  S1). Details and analytical power formulae for three 
“1-stage GxAge,” the “1-stage Change,” and the “2-stage GxAgeChange” approaches 
are shown in Additional file 2: Note S1. To derive power for the genome-wide GxAge 
search (PWRGxAge,gws), we calculated power to identify an interaction effect at 
alphaGxAge = 5 × 10−8. To derive power of the 2-step GxAge search (PWRGxAge,2-step), 
we first calculated power to find a marginal effect at alphaG = 5 × 10−8 and multiplied 
this by the power to identify an interaction effect at alphaGxAge = 0.05/1000 (assuming 
1000 independent interaction tests among marginally associated variants). Power of the 
“1-stage GxAge” approach was then calculated by a combination of the two approaches: 
PWRGxAge = PWRGxAge,gws + PWRGxAge,2-step − PWRGxAge,gws * PWRGxAge,2-step. Power 
to identify annual change effects in 1-stage was calculated similarly based on a com-
bination of a genome-wide search, alphaChange = 5 × 10−8, and a 2-step search, 
alphaChange = 0.05/1000 (again assuming 1000 independent tests among marginally asso-
ciated variants). For the “2-stage GxAgeChange” approach with validation for annual 
change effects, power of the GxAge approach (PWRGxAge) was multiplied with the power 
to identify annual change effects at alphaChange = 0.05/10 (assuming 10 independent 
GxAge interactions).

Genome‑wide association analyses

We used regenie [43] to conduct our genome-wide association and genetic-by-age inter-
action analyses. We assumed an additive genotype model and employed a linear mixed 
model to account for population substructure and further adjusted the regression analy-
ses for sex, age, age × sex, and 20 genetic principal components obtained from the PAN-
UKB project (https://​pan.​ukbb.​broad​insti​tute.​org/). We excluded any variants that were 
rare (MAF < 0.01%) and restricted our analyses to variants with high imputation quality 
(Info ≥ 0.8). We applied a genomic control correction to the genome-wide association 
and genetic-by-age interaction results (using GC lambdas that were estimated based on 
null variants > 5  Mb distant from genome-wide significant marginally associated vari-
ants) [44]. Within regenie, we applied the “–interaction agec –no-contl” parameter in 
order to fit the genetic-by-age interaction model and to additionally output marginal 
(unconditioned) genetic effect estimates. The marginal effect sizes were then utilized 
in the 2-step approaches (pre-filtering on marginal effects). For the annual trait change 
GWAS in the longitudinal data, we employed a regular regenie analysis without interac-
tion parameter.

https://pan.ukbb.broadinstitute.org/
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Variant selection and locus definition

To derive non-overlapping loci and their index variants, we first clumped the signifi-
cant variants into independent regions based on a base position threshold of 500 kb 
(i.e., distance between significant regions is always greater than 500 kb). Then, within 
each region, we further clumped the significant variants into loci based on a r2 thresh-
old of 0.01: Starting with the most significant variant of the region as the index vari-
ant of the first LD bin, we added all correlated variants (r2 ≥ 0.01) to this first locus. 
We removed all variants of the first locus and restarted the clumping taking the most 
significant variant among remaining variants as the index variant of the second locus. 
We stopped when there were no more variants left within the region and continued 
to clump loci in the next region. We utilized a reference file of 20,000 unrelated indi-
viduals of the UKB to obtain r2.

Sensitivity analyses to evaluate birth cohort, selection, and survival effects

A genetic-by-age interaction (GxAge) effect on the trait Y can be confounded by 
a covariate C that is (i) correlated with GxAge and associated with Y (explored by 
adjusting for C), (ii) correlated with age and exerting a genetic-by-covariate interac-
tion (GxC) with the trait (explored by adjusting for GxC), or (iii) correlated with G 
and the covariate-by-age interaction (CxAge) being associated with the trait (explored 
by adjusting for CxAge) [7]. Birthyear can be such a confounder (birth cohort effect). 
In theory, this can be explored by sensitivity analyses adjusting for birthyear, GxBirth-
year, and AgexBirthyear. Yet, in practice, age and birthyear are often highly correlated 
in cohort studies leading to collinearity and thus inconclusive results for such sen-
sitivity analyses. We explored this correlation and sensitivity analysis adjusting for 
birthyear:

When birthyear and AGE are highly correlated and birthyear affects G, the genetic 
variant G will be associated with AGE: this can be tested in practice by fitting a linear 
regression model with AGE as outcome,

An association of G with age is not only possible due to a birthyear effect, but can 
also result from survival or selection effects. We tested each variant identified with 
GxAGE for association with AGE with this model.

Gene prioritization and tissue‑specific enrichment

We conducted gene prioritization and tissue-specific enrichment analyses at the 
genetic-by-age interaction loci using FUMA [10] and DEPICT [9] as well as direct 
variant-to-tissue mapping using FORGE2 [13]. For FUMA, significant genetic-by-
age interaction variants were uploaded to the SNP2GENE portal whereas the identi-
fied index variants and genomic regions were used as predefined lead variants and 
regions (http://​fuma.​ctglab.​nl/). The option to identify additional index variants 
was switched off to ensure gene mapping at the identified variants. Gene mapping 

Y = β0 + βGG + βAgeAGE + βGxAgeG · AGE + βBY BY + βCC + ε

AGE = δ0 + δGG + δCC + ǫ

http://fuma.ctglab.nl/
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was based on position, expression, and 3D chromatin interaction (both restricted to 
relevant tissues). Results from the SNP2GENE mapping were transferred to GEN-
E2FUNC mapping functionality to obtain tissue specific expression analysis results 
and expression heatmaps. DEPICT analysis were conducted based on variants located 
at the identified genetic-by-age interaction loci with a relaxed P value threshold of 
PGxAge < 1 × 10−5 on the virtual analysis platform Complex Traits Genetics Virtual Lab 
(CTG-VL, https://​vl.​genoma.​io/) [45]. FORGE2 mapping based on chromatin activ-
ity was conducted based on ENCODE annotations for the genetic-by-age interaction 
variants using the FORGE2 online tool (https://​forge2.​altiu​sinst​itute.​org/). DEPICT, 
FUMA, and FORGE2 analyses were only informative for pulse pressure and could not 
be executed for the other traits due to the relatively small number of genetic-by-age 
interaction loci identified. For comparison reasons, FUMA, DEPICT, and FORGE2 
analyses were repeated for genome-wide significant pulse pressure loci without 
genetic-by-age interaction (PMarginal < 5 × 10−8; but no interaction with age).
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