XML-RPC for PHP User Manual

Gaetano Giunta, Edd Dumbill

4.11.0

Table of Contents

A foreword
Requirements and installation instructions
API usage
Type conversion
Manual type conversion: PHP to XML-RPC
Manual type conversion: XML-RPC to PHP
Automatic type conversion: PHP to XML-RPC
Automatic type conversion: XML-RPC to PHP
Notes on types
strict parsing vs. lenient parsing
Client
Client creation
Sending requests
Automatic decoding of the response’s value
Troubleshooting failed calls
Modifying the client’s behaviour
Sending multiple requests
Server
The dispatch map
Method signatures
Method handler functions
Delaying the server response
Modifying the server’s behaviour
Troubleshooting server’s method handlers
Fault reporting
Reserved methods
system.getCapabilities
system.listMethods
system.methodSignature
system.methodHelp
system.multicall
Global configuration
$xmlrpc_defencoding
$xmlrpc_internalencoding
$xmlpc_double_precision
$xmlrpcName
$xmlrpcVersion

$xmlrpc_null_extension

© 00 00 00 U1 U1 Ul = W N = = = =

NN DN DN DN DN DN DNDDNDDNDDNDNDDNDDN R B =Rl s)
B R WWwW WD NN R R R R, OO O 00N WD R, O O

$xmlrpc_null_apache_encoding
Errors and Logging
Helper classes and functions
Date handling
Decoding xml
Transferring PHP objects over XML-RPC
Code generation, Proxy objects & co.
wrapXmlrpcMethod
wrapXmlrpcServer
wrapPhpFunction
wrapPhpClass
Code generation
Other tools
Performances
Performance optimization tips
Upgrading
our Backward Compatibility promise
Upgrading to version 4
Upgrading to version 2
xmlrpc_decode
xmlrpc_encode
Bundled debugger
Debugger setup
Debugger usage
Using the debugger against a local server
Debugger extension
Alternative debugger setup
Running tests
Frequently Asked Questions
My client returns "XML-RPC Fault #2: Invalid return payload: enable debugging to examine
incoming payload": what should I do?
How can I save to a file the xml of the xml-rpc responses received from servers?
How can I save to a file the xml of the xml-rpc requests/responses generated from the library?
Is there any limitation on the size of the requests / responses that can be successfully sent?
How to send custom XML as payload of a method call
My server (client) returns an error whenever the client (server) sends accented characters
Can I use the MS Windows character set?
Does the library support using cookies / http sessions?
Does the library support following http redirects?
Does the library support setting custom cURL options?

Does the server support cross-domain xml-rpc calls?

24
24
25
25
26
26
27
27
29
29
31
31
31
31
32
32
32
33
33
34
34
34
34
34
35
35
36
36
37

How to enable long-lasting method calls

Integration with the PHP xmlrpc extension

Substitution of the PHP xmlrpc extension
Appendix A: Files in the distribution
Appendix B: Exception hierarchy

41
41
42
42
43

A foreword

You might be surprised by some API design choices made by this library. In order to understand
that, please keep in mind that this started out as a bare framework around the time of PHP 3, when
Exceptions and the DateTime class did not exist, and PHP best practices were remarkably different
from current ones. While many "nice bits" have been put in over time, backwards compatibility has
always taken precedence over API cleanups.

In no particular order, this is partial list of things some developers might find perplexing.

Extensions to the XML-RPC protocol, such as support for the <NIL> tag, have to be manually enabled
before usage.

Little HTTP response checking is performed (e.g. HTTP redirects are not followed by default and the
Content-Length HTTP header, mandated by the xml-rpc spec, is not validated); cookie support still
involves quite a bit of coding on the part of the user.

Very little type validation or coercion has been put in. PHP being a loosely-typed language, this is
going to have to be done explicitly (in other words: you can call a lot of library functions passing
them arguments of the wrong type and receive an error message only much further down the code,
where it will be difficult to understand).

dateTime.iso8601 is supported opaquely, largely for historical reasons. Datetime conversion can’t
be done transparently as the XML-RPC specification explicitly forbids passing of timezone specifiers
in ISO8601 format dates. You can, however, use the PhpXmlRpc\Helper\Date class to do the encoding
and decoding for you, or force usage of DateTime objects via the
PhpXm1Rpc\PhpXmlRpc: :$xmlrpc_return_datetimes variable.

There are a lot of static class variables which are meant be treated as if they were constants.
Usage of Exceptions is almost non-existent.

A mix of snake_case and CamelCase naming is used.

Requirements and installation instructions

See https://github.com/gggeek/phpxmlrpc/blob/master/INSTALL.md

API usage

Type conversion

A big part the job of this library is to convert between the data types supported by PHP (null, bool,
int, float, string, array, object, callable, resource), and the value types supported by XML-RPC (int,
boolean, string, double, dateTime.is08601, baseb4, struct, array).

The conversion process can be mostly automated or fully manual. It is up to the single developer to

https://github.com/gggeek/phpxmlrpc/blob/master/INSTALL.md

decide the best approach to take for his/her application.

Manual type conversion: PHP to XML-RPC

The PhpXmlRpc\Value class is used to encapsulate PHP primitive types into XML-RPC values.

The constructor is the normal way to create a Value. The constructor can take these forms:

Value new Value

Value new Value(string $stringVal)

Value new Value(mixed $scalarVal, string $scalarTyp)
Value new Value(Value[] $arrayVal, string $arrayTyp)

The first constructor creates an empty value, which must be altered using the methods addScalar (),
addArray() or addStruct() before it can be used further.

The second constructor creates a string scalar value.

The third constructor is used to create a scalar value of any type. The second parameter must be a
name of an XML-RPC type. Valid types are: "int", "i4", "i8", "boolean", "double", "string",
"dateTime.iso8601", "base64" or "null". For ease of use, and to avoid compatibility issues with future

revisions of the library, they are also available as static class variables:

Value::$xmlrpcI4 = "i4";
Value::$xmlrpcI8 = "i8";
Value::$xmlrpcInt = "int";
Value::$xmlrpcBoolean = "boolean";
Value::$xmlrpcDouble = "double";
Value::$xmlrpcString = "string";
Value::$xmlrpcDateTime = "dateTime.is08601";
Value::$xmlrpcBase64 = "base64";
Value::$xmlrpcArray = "array";
Value::$xmlrpcStruct = "struct";
Value::$xmlrpcValue = "undefined";
Value::$xmlrpcNull = "null";

Examples:

use PhpXmlRpc\Value;

$myString = new Value("Hello, World!");

$myInt = new Value(1267, "int");

$myBool = new Value(1, Value::$xmlrpcBoolean);

// note: this will serialize a php float value as xml-rpc string
$myString2 = new Value(1.24, Value::$xmlrpcString);

// the 1ib will take care of baseb4 encoding

$myBase64 = new Value(file_get_contents('my.gif'), Value::$xmlrpcBase64);
$myDatel = new Value(new DateTime(), Value::$xmlrpcDateTime);

// when passing in an int, it is assumed to be a UNIX timestamp

$myDate2 = new Value(time(), Value::$xmlrpcDateTime);

// when passing in a string, you have to take care of the formatting
$myDate3 = new Value(date("Ymd\TH:i:s", time()), Value::$xmlrpcDateTime);

The fourth constructor form can be used to compose complex XML-RPC values. The first argument
is either a simple array in the case of an XML-RPC array or an associative array in the case of a
struct. The elements of the array must be Value objects themselves. The second parameter must be
either "array" or "struct".

Examples:

use PhpXmlRpc\Value;

$myArray = new Value(
array(
new Value("Tom"),
new Value("Dick"),
new Value("Harry")

)I

"array"

)

// nested struct
$myStruct = new Value(
array(
"name" => new Value("Tom", Value::$xmlrpcString),
"age" => new Value(34, Value::$xmlrpcInt),
"address" => new Value(
array(
"street" => new Value("Fifht Ave", Value::$xmlrpcString),
"city" => new Value("NY", Value::$xmlrpcString)
P
Value::$xmlrpcStruct
)

e
Value::$xmlrpcStruct

Manual type conversion: XML-RPC to PHP

For Value objects of scalar type, the php primitive value can be obtained via the scalarVal()
method. For base64 values, the returned value will be decoded transparently. NB: for dateTime
values the php value will be the string representation by default.

Value objects of type struct and array support the Countable, IteratorAggregate and ArrayAccess
interfaces, meaning that they can be manipulated as if they were arrays:

if (count($structValue)) {
foreach($structValue as $elementName => $elementValue) {
// do not forget html-escaping $elementName in real life!
echo "Struct member '$elementName' is of type " . $elementValue->scalarTyp() .
“\n";
}
} else {
echo "Struct has no members\n";

}

As you can see, the elements of the array are Value objects themselves, i.e. there is no recursive
decoding happening.

Automatic type conversion: PHP to XML-RPC

Manually converting the data from PHP to Value objects can become quickly tedious, especially for
large, nested data structures such as arrays and structs. A simpler alternative is to take advantage
of the PhpXmlRpc\Encoder class to carry out automatic conversion of arbitrarily deeply nested
structures. The same structure of the example above can be obtained via:

use PhpXmlRpc\Encoder;

$myStruct = new Encoder()->encode([
"name" => "Tom",
"age" => 34,
"address" => [
"street" => "Fifht Ave",
"city" => "NY"
1
1);

Encoding works recursively on arrays and objects, encoding numerically indexed php arrays into
array-type Value objects and non numerically indexed php arrays into struct-type Value objects.
PHP objects are encoded into struct-type Value by iterating over their public properties, excepted
for those that are already instances of the Value class or descendants thereof, which will not be
further encoded. Optionally, encoding of date-times is carried-on on php strings with the
corresponding format, as well as encoding of NULL values. Note that there’s no support for
encoding php values into base64 values - base64 Value objects have to be created manually (but
they can be part of a php array passed to encode). Another example, showcasing some of those
features:

use PhpXmlRpc\Encoder;
use PhpXmlRpc\Value;

$value = new Encoder()->encode(
array(
"first struct_element: a null' => null,

'2nd: a baseb4 element' => new Value('hello world', 'base64'),
'3rd: a datetime' => '20060107T701:53:00'
)

array('auto_dates', 'null_extension')

)i

See the phpdoc documentation for PhpXmlRpc\Encoder::encode for more details on the encoding
process and available options.

Automatic type conversion: XML-RPC to PHP

In the same vein, it is possible to automatically convert arbitrarily nested Value objects into native
PHP data by using the PhpXmlRpc\Encoder : :decode method.

A similar example to the manual decoding above would look like:

use PhpXmlRpc\Encoder;

$data = new Encoder()->decode($structValue);
if (count($data)) {
foreach($data as $elementName => $element) {
// do not forget html-escaping $elementName in real life!
echo "Struct member '$elementName' is of type " . gettype($element) . "\n";

}
} else {
echo "Struct has no members\n";

}

Note that when using automatic conversion this way, all information about the original xml-rpc
type is lost: it will be impossible to tell apart an i4 from an 18 value, or to know if a php string had
been encoded as xml-rpc string or as base64.

See the phpdoc documentation for PhpXmlRpc\Encoder::decode for the full details of the decoding
process.

Notes on types

strict parsing vs. lenient parsing

When Value objects are created by the library by parsing some received XML text, the parsing code
is lenient with invalid data. This means that if the other party is sending some junk, the library will,
by default: - log error messages pinpointing the exact source of the problem, and - feed to your
application "error values", which include false for bad base64 data, the string
'ERROR_NON_NUMERIC_FOUND' for integers and doubles, false for invalid booleans, and the
received string for invalid datetimes. This behaviour can be changed to make the parsing code
more strict and produce an error instead of letting through invalid data, by setting
PhpXm1Rpc\PhpXmlRpc: :$xmlrpc_return_datetimes = true.

https://gggeek.github.io/phpxmlrpc/doc-4/api/classes/PhpXmlRpc-Encoder.html#method_encode
https://gggeek.github.io/phpxmlrpc/doc-4/api/classes/PhpXmlRpc-Encoder.html#method_encode

base64

Base 64 encoding is performed transparently to the caller when using this type. Decoding is also
transparent. Therefore, you ought to consider it as a "binary" data type, for use when you want to
pass data that is not XML-safe.

boolean

All php values which would be converted to a boolean TRUE via typecasting are mapped to an xml-
rpc true. All other values (including the empty string) are converted to an xml-rpc false.

dateTime.iso8601

When manually creating Value objects representing an xml-rpc dateTime.iso8601, php DateTimes,
integers (unix timestamps) and strings (representing dates in the specific xml-rpc ISO-8601 format)
can be used as source values. For those, the original value will be returned when calling $value-
>scalarVal();.

When Value objects are created by the library by parsing some received XML text, all Value objects
representing an xml-rpc dateTime.iso8601 value will by default return the string representation of
the date when calling $value->scalarVal();.

Datetime conversion can’t be safely done in a transparent manner as the XML-RPC specification
explicitly forbids passing of timezone specifiers in ISO8601 format dates. You can, however, use
multiple techniques to transform the date string into another representation of a timestamp, and
take care of timezones by yourself: * use the PhpXmlRpc\Helper\Date class to convert the date string
into a unix timestamp; * set PhpXmlRpc\PhpXmlRpc::$xmlrpc_return_datetimes = true to always get
back a php DateTime from received xml (in which case the conversion is done using the timezone
set in php.ini) * use the PhpXmlRpc\Encoder: :decode method with the 'dates_as_objects' option to get
back a php DateTime from a single or nested Value object (in which case the conversion is done
using the strtotime function, which uses the timezone set in php.ini). Note that, when using
$xmlrpc_return_datetimes or 'dates_as_objects’, you might still get back a php false or null instead of
a DateTime if the data received via xml does not represent a valid date and time. You can configure
the library to outright reject such cases and avoid having to explicitly check for them in your own
code, by setting PhpXm1Rpc\PhpXmlRpc: :$xmlrpc_return_datetimes = true.

double

The xml-rpc spec explicitly forbids using exponential notation for doubles. The phpxmlrpc toolkit
serializes php float values using a fixed precision (number of decimal digits), which can be set using
the variable PhpXmlRpc: : $xmlpc_double_precision.

int

The xml parsing code will always convert "i4" to "int": int is regarded by this implementation as the
canonical name for this type.

The type i8 on the other hand is considered as a separate type. Note that the library will never
output integers as 'i8' on its own, even when php is compiled in 64-bit mode - you will have to
create i8 Value objects manually if required.

string

When serializing strings, characters '<', >', "', ", '&', are encoded using their entity reference as
'<', '>', ''', '"’ and '&'. All other characters outside the ASCII range are encoded
using their unicode character reference representation (e.g. 'È' for 'é"). The XML-RPC spec
recommends only encoding '<' and '&', but this implementation goes further, for reasons explained
by the XML 1.0 recommendation. In particular, using character reference representation has the
advantage of producing XML that is valid independently of the charset encoding assumed.

Note that the library assumes that your application will be using data in UTF-8. This applies both to
string values sent and to string values received (i.e. the data fed to your application will be
transparently transcoded if the remote client/server uses a different character set encoding in its
requests/responses). If this is not the case, and you have the php mbstring extension enabled, you
can set the desired character set to PhpXmlRpc:: $xmlrpc_internalencoding, and the library will go out
of its way to make character set encoding a non-issue (*).

In case the string data you are using is mostly outside the ASCII range, such as f.e. when
communicating information in chinese, japanese, or korean, you might want to avoid the automatic
encoding of all non-ascii characters to references, as it has performance implications, both in cpu
usage and in the size of the generated messages. For such scenarios, it is recommended to set both
PhpXmlRpc::$xmlrpc_internalencoding and $client->setOption('request_charset_encoding', ...) /
$server->setOption('response_charset_encoding', ...) to 'UTF-8"

The demo file demo/client/windowscharset.php showcases client-side usage of
$xmlrpc_internalencoding.

Note that, despite what the specification states, string values should not be used to encode binary
data, as control characters (such as f.e. characters nr. 0 to 8) are never allowed in XML, even when
encoded as character references.

* = at the time of writing, fault strings and xml-rpc method names are still expected to be UTF-8

null

There is no support for encoding null values in the XML-RPC spec, but at least a couple of
extensions (and many toolkits) do support it. Before using null values in your messages, make sure
that the remote party accepts them, and uses the same encoding convention.

To allow reception of messages containing <NIL/> or <EX:NIL/> elements, set

PhpXmlRpc\PhpXmlRpc: :$xmlrpc_null_extension = true;

somewhere in your code before the messages are received.

To allow sending of messages containing <NIL/> elements, simply create Value objects using the
string 'mull' as the 2nd argument in the constructor. If you’d rather have those null Values be
serialized as <EX:NIL/> instead of <NIL/>, please set

http://www.w3.org/TR/REC-xml#syntax

PhpXmlRpc\PhpXmlRpc: :$xmlrpc_null_apache_encoding = true;
somewhere in your code before the values are serialized.

Client

Client creation

The constructor accepts one of two possible syntax forms:

Client new Client(string $server_url)
Client new Client(string $server_path, string $server_hostname, int $server_port = 80,
string $transport = 'http')

Here are a couple of usage examples of the first form:

use PhpXmlRpc\Client;

$client = new Client("https://phpxmlrpc.sourceforge.io/server.php");
$another _client = new Client
("https://james:bond@secret.service.com:443/xmlrpcserver?agent=007");

Note that 'http11’, 'http10', 'h2' (for HTTP2) and 'h2c' can be used as valid alternatives to 'http' and
'https' in the provided url.

The second syntax does not allow to express a username and password to be used for basic HTTP
authorization as in the second example above, but instead it allows to choose whether xml-rpc calls
will be made using the HTTP protocol version 1.0, 1.1 or 2.

Here’s another example client set up to query Userland’s XML-RPC server at betty.userland.com:

use PhpXmlRpc\Client;

$client = new Client("/RPC2", "betty.userland.com", 80);

The $server_port parameter is optional, and if omitted will default to '80' when using HTTP and
'443"' when using HTTPS or HTTP2.

The $transport parameter is optional, and if omitted will default to 'http'. Allowed values are either
'http', 'https', 'http11', "http10', 'h2' or 'h2c'. See the phpdoc documentation for the send method for
more details about the meaning of the different values.

Sending requests

The Client’s send method takes a PhpmlRpc\Request object as first argument, and always returns a

https://gggeek.github.io/phpxmlrpc/doc-4/api/classes/PhpXmlRpc-Client.html#method_send

PhpmlRpc\Response one, even in case of errors communicating with the server.

use PhpXmlRpc\Client;
use PhpXmlRpc\Request;
use PhpXmlRpc\Value;

$stateNo = (int)$_POST["stateno"];
$req = new Request(
"examples.getStateName',
array(new Value($stateNo, Value::$xmlrpcInt))
e
$client = new Client("https://phpxmlrpc.sourceforge.io/server.php");
$resp = $client->send($req);
if (!$resp->faultCode()) {
$v = $resp->value();
print "State number $stateNo is " . htmlentities($v->scalarval()) . "
";
print "<HR>I got this xml back
<PRE>" . htmlentities($resp->serialize()) .
"</PRE><HR>\n";
} else {
print "Fault
";
print "Code: " . htmlentities($resp->faultCode()) . "
" . "Reason: '" .
htmlentities($resp->faultString()) . "'
";

Automatic decoding of the response’s value

By default, the Response object’s value() method will return a Value object, leaving it to the
developer to unbox it further into php primitive types. In the spirit of making the conversion
between the xml-rpc types and php native types as simple as possible, it is possible to make the
Client object return directly the decoded data by setting a value to the Client’s 'return_type' option:

use PhpXmlRpc\Client;

use PhpXmlRpc\Helper\XMLParser;
use PhpXmlRpc\Request;

use PhpXmlRpc\Value;

$stateNo = (int)$ _POST["stateno"];
$req = new Request(
"examples.getStateName',
array(new Value($stateNo, Value::$xmlrpcInt))
IE
$client = new Client("https://phpxmlrpc.sourceforge.io/server.php");
$client->setOption(Client::OPT_RETURN_TYPE, XMLParser::RETURN_PHP);
$resp = $client->send($req);
if (!$resp->faultCode()) {
$v = $resp->value();
// no need to call ‘scalarval' here
print "State number $stateNo is " . htmlentities($v) . "
";
print "<HR>I got this xml back
<PRE>" . htmlentities($resp->serialize()) .

"</PRE><HR>\n";
} else {
print "Fault
";
print "Code: " . htmlentities($resp->faultCode()) . "
" . "Reason: '" .
htmlentities($resp->faultString()) . "'
";

This style of making calls will result in reduced memory and cpu usage, and be slightly faster. It is
recommended for scenarios where the expected responses are huge, or every little bit of
optimization is required.

Please note that, just as with the PhpXmlRpc\Encoder: :decode method, this will make it impossible to
tell apart values which were sent over the wire as strings from values which were base64. On the
other hand, unlike that method, at the moment it is not possible to make use of any options to
tweak the decoding process.

Troubleshooting failed calls

To ease troubleshooting problems related to the underlying communication layer, such as
authentication failures, character set encoding snafus, compression problems, invalid xml, etc...,
the Client class can dump to the screen a detailed log of the HTTP request sent and response
received. It can be enabled by calling the setDebug method with values 1 or 2.

It is also possible to analyze the different parts of the HTTP response received by making use of the
PhpXmlRpc\Response: :httpResponse method.

Modifying the client’s behaviour

A wide range of options can be set to the client to manage the details of the HTTP communication
layer, including authentication (Basic, Digest, NTLM), SSL certificates, proxies, cookies, compression
of the requests, usage of keepalives for consecutive calls, the accepted response compression,
charset encoding used for the requests and the user-agent string.

The complete list of options available for the setOption call, and their current value, can be
obtained via a call to getOptions. See the phpdoc documentation for details on the valid values of all
the options.

cURL vs socket calls

Please note that, depending on the HTTP protocol version used and the options set to the client, the
client will transparently switch between using a socket-based HTTP implementation and a cURL
based implementation. If needed, you can make use of a setOption(Client::0PT_USE_CURL, ---)
method call to force or disable usage of the cURL based implementation.

When using cURL as the underlying transport, it is possible to set directly into the client any of the
cURL options available in your php installation, via a setOption(Client::0PT_EXTRA_CURL_OPTS, --)
method call.

When using sockets as the underlying transport, it is possible to set directly into the client any of

10

https://gggeek.github.io/phpxmlrpc/doc-4/api/classes/PhpXmlRpc-Client.html

the stream context options available for ssl and tcp in your php installation, via a
setOption(Client::OPT_EXTRA_SOCKET_OPTS, ---) method call.

Sending multiple requests

Both the Client and Server classes provided by the library support the "multicall" xmlrpc extension,
which allows to execute multiple xml-rpc requests with a single http call, by wrapping them up in a
call to the system.mu1tiCall method.

The expected advantage is a nice improvements in performances, especially when there are many
small requests at play, but, as always, the devil is in the details: the multicall specification does not
mandate for the server to execute the single requests within the multicall method in a specific
order, nor how to handle execution errors happening halfway through the list.

The phpxmlrpc server will execute all the requests sequentially, in the same order in which they
appear in the xml payload, and will try its best to execute them all, even if one of them fails, but
there is no guarantee on the latter point.

In order to take advantage of multicall, either use the Client’s multicall method, or just pass an
array of Request to the send method:

$m1 = new PhpXmlRpc\Request('system.methodHelp');
$m2 = new PhpXmlRpc\Request('system.methodSignature');
$val = new PhpXmlRpc\Value('an-xmlrpc-method', "string");
$m1->addParam($val);
$m2->addParam($val);
$ms = array($m1, $m2);
$rs = $client->multicall($ms);
foreach($rs as $resp) {
var_dump($rs->faultCode());
var_dump($rs->value());

Please note that, in case of faults during execution of a multicall call, the Client will automatically
fail back to sending every request separately, one at a time. If you are sure that the server supports
the multicall protocol, you might want to optimize and avoid this second attempt by passing false
as 2nd argument to multicall().

If, on the other hand, after writing code which uses the multicall method, you are forced to migrate
to a server which does not support the system.multiCall method, you can simply call $client-
>setOption(Client::0OPT_NO_MULTICALL, true).

In case you are not using multicall, but have to send many requests in a row to the same server, the
best performances are generally obtained by forcing the Client to use the cURL HTTP transport,
which enables usage of http keepalive, and possibly of HTTP2.

The demo file _demo/client/parallel.php is a good starting point if you want to compare the
performances of a single multicall request vs. sending multiple requests in a row. It even shows a
non-multicall implementation which uses cURL to achieve sending of multiple requests in parallel.

11

Server

The implementation of this class has been kept as simple to use as possible. The constructor for the
server basically does all the work. Here’s a minimal example:

use PhpXmlRpc\Request;
use PhpXmlRpc\Response;
use PhpXmlRpc\Server;

function foo(Request $xmlrpc_request) {

return new Response($some_xmlrpc_val);

}
class Bar {
public static function fooBar(Request $xmlrpc_request) {
return new Response($some_xmlrpc_val);
}
}

$s = new Server(
array(
"examples.myFunc1" => array("function" => "foo"),
"examples.myFunc2" => array("function" => "Bar::fooBar"),

)

This performs everything you need to do with a server. The single constructor argument is an
associative array from xml-rpc method names to php callables.

The dispatch map

The first argument to the Server constructor is an array, called the dispatch map. In this array is the
information the server needs to service the XML-RPC methods you define.

The dispatch map takes the form of an associative array of associative arrays: the outer array has
one entry for each method, the key being the method name. The corresponding value is another
associative array, which can have the following members:

 function - this entry is mandatory. It must be a callable: either a name of a function in the global
scope which services the XML-RPC method, an array containing an instance of an object and a
method name, an array containing a class name and a static method name (for static class
methods the '$class::$method’ syntax is also supported), or an inline anonymous function.

* signature - this entry is an array containing the possible signatures (see Method signatures) for
the method. If this entry is present then the server will check that the correct number and type
of parameters have been sent for this method before dispatching it.

* docstring - this entry is a string containing documentation for the method. The documentation

12

may contain HTML markup.

* signature_docs - this entry can be used to provide documentation for the single parameters. It
must match in structure the 'signature’ member. By default, only the documenting_xmlrpc_server
class in the extras package will take advantage of this, since the system.methodHelp protocol does
not support documenting method parameters individually.

* parameters_type - this entry can be used when the server is working in 'xmlrpcvals' mode (see
Method handler functions) to define one or more entries in the dispatch map as being functions
that follow the 'phpvals' calling convention. The only useful value is currently the string
'‘phpvals'. NB: this is known to be broken atm

» exception_handling - this entry can be used to let the server handle in different ways the
exceptions/errors thrown during execution of specific method handlers. By default any such
error results in an xml-rpc response with a fixed fault code and fault string, which is a good
security practice, but this behaviour can be changed to help debugging or in scenarios where
the code is known to only ever throw "meaningful" exceptions with no sensitive information

Methods system.listMethods, system.methodHelp, system.methodSignature and system.multicall are
already defined by the server, and should not be reimplemented (see Reserved methods below).

Method signatures

A signature is a description of a method’s return type and its parameter types. A method may have
more than one signature.

Within a server’s dispatch map, each method has an array of possible signatures. Each signature is
an array, with the first element being the return type, and the others being the types of the

parameters. For instance, the method

string examples.getStateName(int)

has the signature

use PhpXmlRpc\Value;

array(Value::$xmlrpcString, Value::$xmlrpcInt)

and, assuming that it is the only possible signature for the method, it might be used like this in

server creation:

use PhpXmlRpc\Server;
use PhpXmlRpc\Value;

array(array(Value::$xmlrpcString, Value::$xmlrpcInt));

$findstate_sig

$findstate_doc = 'When passed an integer between 1 and 51 returns the name of a US ' .
'state, where the integer is the index of that state name in an alphabetic
order.';

13

$srv = new Server(array(
"examples.getStateName" => array(
"function" => "...",
"signature" => $findstate_sig,
"docstring" => $findstate_doc

)
)i

Note that method signatures do not allow to check nested parameters, e.g. the number, names and
types of the members of a struct param cannot be validated.

If a method that you want to expose has a definite number of parameters, but each of those
parameters could reasonably be of multiple types, the list of acceptable signatures will easily grow
into a combinatorial explosion. To avoid such a situation, the lib defines the class property
Value::$xmlrpcValue, which can be used in method signatures as a placeholder for 'any xml-rpc

type':

use PhpXmlRpc\Server;
use PhpXmlRpc\Value;

$echoback_sig = array(array(Value::$xmlrpcValue, Value::$xmlrpcValue));

$findstate_doc = 'Echoes back to the client the received value, regardless of its
type';

$srv = new Server(array(
"echoBack" => array(
"function" => "...",
// this sig guarantees that the method handler will be called with one and
only one parameter
"signature" => $echoback_sig,
"docstring" => $echoback_doc

)
)i

In case a php method that you want to expose has void return type, given the fact that there is no
such thing as "no return value" in the XML-RPC specification, the best approximation is to also use
the class property Value::$xmlrpcValue to indicate the return type in the method signature.

Method handler functions

The same php function can be registered as handler of multiple xml-rpc methods.

No text should be echoed 'to screen' by the handler function, or it will break the xml response sent
back to the client. This applies also to error and warning messages that PHP prints to screen unless
the appropriate settings have been set in php.ini, namely display_errors. Another way to prevent
echoing of errors inside the response and facilitate debugging is to use the server’s SetDebug method

14

with debug level 3 (see setDebug() / Server::OPT_DEBUG).

Exceptions thrown during execution of handler functions are caught by default and an XML-RPC
error response is generated instead. This behaviour can be fine-tuned by setting the
‘exception_handling' server option (see Server::OPT_EXCEPTION_HANDLING); please be aware that
allowing publicly accessible servers to return the information from php exceptions as part of the
xml-rpc response is a sure way to get hacked.

Manual type conversion

In this mode of operation, the incoming request is parsed into a Request object and dispatched to
the relevant php function, which is responsible for returning a Response object, that will be
serialized back to the caller. The synopsis of a method handler function is thus:

Response $resp = function(Request $req)

Note that if you implement a method with a name prefixed by system. the handler function will be
invoked by the server with two parameters, the first being the server itself and the second being the
Request object.

Here is a more detailed example of what a handler function "foo" might do:

use PhpXmlRpc\PhpXmlRpc;
use PhpXmlRpc\Request;
use PhpXmlRpc\Response;
use PhpXmlRpc\Value;

/**

* @param Request $xmlrpcreq

* @return Response

*/

function foo ($xmlrpcreq)

{
// retrieve method name
$meth = $xmlrpcreq->method();
// retrieve value of first parameter - assumes at least one param received
$par = $xmlrpcreq->getParam(0);
// decode value of first parameter - assumes it is a scalar value
$val = $par->scalarVal();

// note that we could also have achieved the same this way:
//$val = new PhpXmlRpc\Encoder()->decode($xmlrpcreq)[0];

if ($err) {
// this 1is an error condition
return new Response(
null,

15

PhpXmlRpc: :$xmlrpcerruser + 1, // user error 1
"There's a problem, Captain"
)i
} else {
// this is a successful value being returned
return new Response(new Value("All's fine!"));

Automatic type conversion

In the same spirit of simplification that inspired the Client’s 'return_type' option, a similar option is
available within the server class: 'functions_parameters_type'. When set to the string 'phpvals’, the
functions registered in the server dispatch map will be called with plain php values as parameters,
instead of a single Request instance parameter. The return value of those functions is expected to
be a plain php value, too. An example is worth a thousand words:

use PhpXmlRpc\PhpXmlRpc;
use PhpXmlRpc\Server;
use PhpXmlRpc\Value;

function foo($usr_id, $out_lang='en')

{
if ($someErrorCondition)
throw new \Exception('DOH!', PhpXmlRpc::$xmlrpcerruser+1);
else
return array(
"name' => 'Joe',
'age' => 27,
// it is possible to mix php values and Value objects!
"picture’ => new Value(file_get_contents($picOfTheGuy), 'base64'),
)
}

$srv = new Server(
array(
"examples.myFunc" => array(

"function" => "foo",

"signature" => array(
array(Value::$xmlrpcStruct, Value::$xmlrpcInt),
array(Value::$xmlrpcStruct, Value::$xmlrpcInt, $xmlrpcString)

)

arameters_type" => "phpvals"

)I

false

16

// The line below is an alternative to specifying ‘parameters_type' for every method
in the dispatch map. It applies

// to all php functions registered with the server.

// If both the server option and the ‘parameters_type' are set, the latter takes
precedence.

//$srv->setOption(Server::0PT_FUNCTIONS_PARAMETERS_TYPE, 'phpvals');

$srv->service();

There are a few things to keep in mind when using this calling convention:

* to return an xml-rpc error, the method handler function must return an instance of Response.
The only other way for the server to know when an error response should be served to the
client is to throw an exception and set the server’s exception_handling member var to 1 (but
please note that this is generally a very bad idea for servers with public access);

* to return a base64 value, the method handler function must encode it on its own, creating an
instance of a Value object;

* to fine-tune the encoding to xml-rpc types of the method handler’s result, you can use the
Server’s ‘phpvals_encoding_options' option

 the method handler function cannot determine the name of the xml-rpc method it is serving,
unlike manual-conversion handler functions that can retrieve it from the Request object;

* when receiving nested parameters, the method handler function has no way to distinguish a
php string that was sent as base64 value from one that was sent as a string value;

* this has a direct consequence on the support of system.multicall: a method whose signature
contains datetime or base64 values will not be available to multicall calls;

* last but not least, the direct parsing of xml to php values is faster than using xmlrpcvals, and
allows the library to handle bigger messages without allocating all available server memory or
smashing PHP recursive call stack.

An example of a Server wusing automatic type conversion is found in demo file
demo/server/discuss.php

Delaying the server response

You may want to construct the server, but for some reason not fulfill the request immediately
(security verification, for instance). If you omit to pass to the constructor the dispatch map or pass
it a second argument of 0 this will have the desired effect. You can then use the service method of
the server instance to service the request. For example:

use PhpXmlRpc\Server;

// second parameter = @ prevents automatic servicing of request
$s = new Server($myDispMap, 0);

// ... some code that does other stuff here

17

$s->service();

Note that the service method will print the complete result payload to screen and send appropriate
HTTP headers back to the client, but also return the response object. This permits further
manipulation of the response, possibly in combination with output buffering.

To prevent the server from sending HTTP headers back to the client, you can pass a second
parameter with a value of true to the service method (the first parameter being the payload of the
incoming request; it can be left empty to use automatically the HTTP POST body). In this case, the
response payload will be returned instead of the response object.

Xml-rpc requests retrieved by other means than HTTP POST bodies can also be processed. For

example:

use PhpXmlRpc\Server;

$srv = new Server(); // not passing a dispatch map prevents automatic servicing of
request

// ... some code that does other stuff here, including setting dispatch map into
server object

// parse a variable instead of POST body, retrieve response payload
$resp = $srv->service($xmlrpc_request_body, true);

// ... some code that does other stuff with xml response $resp here

See the file demo/server/symfony/ServerController.php for a complete example of such use.

Modifying the server’s behaviour

A few options are available to modify the behaviour of the server. The only way to take advantage
of their existence is by usage of a delayed server response (see above) and a setOption call.

setDebug() / Server::OPT_DEBUG

This function controls weather the server is going to echo debugging messages back to the client as
comments in response body. Valid values: 0,1,2,3, with 1 being the default. At level 0, no debug info
is returned to the client. At level 2, the complete client request is added to the response, as part of
the xml comments. At level 3, a new PHP error handler is set when executing user functions
exposed as server methods, and all non-fatal errors are trapped and added as comments into the
response.

Note: the Client class also sports a setDebug method, but its valid values are -1 to 2.

18

Server::OPT_ALLOW_SYSTEM_FUNCS

Default value: true. When set to false, disables support for System.xxx functions in the server. It
might be useful e.g. if you do not wish the server to respond to requests to System.ListMethods.

Server::OPT_COMPRESS_RESPONSE

When set to true, enables the server to take advantage of HTTP compression, otherwise disables it.
Responses will be transparently compressed, but only when an xml-rpc client declares its support
for compression in the HTTP headers of the request.

Note that the ZLIB php extension must be installed for this to work. If it is, 'compress_response' will
default to TRUE.

Server::OPT_EXCEPTION_HANDLING

This option controls the behaviour of the server when an exception is thrown by a method handler
php function. Valid values: 0,1,2, with 0 being the default. At level 0, the server catches the
exception and returns an 'internal error' xml-rpc response; at 1 it catches the exception and returns
an xml-rpc response with the error code and error message corresponding to the exception that
was thrown - never enable it for publicly accessible servers!; at 2, the exception is floated to the
upper layers in the code - which hopefully do not display it to end users.

Server::OPT_RESPONSE_CHARSET_ENCODING

Charset encoding to be used for responses (only affects string values).

If it can, the server will convert the generated response from internal_encoding to the intended
one.

Valid values are: a supported xml encoding (only UTF-8 and IS0-8859-1 at present, unless mbstring is
enabled), null (leave charset unspecified in response and convert output stream to US_ASCII), or
auto (use client-specified charset encoding or same as request if request headers do not specify it
(unless request is US-ASCII: then use library default anyway).

Troubleshooting server’s method handlers

A tried-and-true way to debug a piece of php code is to add a var_dump() call, followed by die(), at
the exact place where one thinks things are going wrong. However, doing so in functions registered
as xml-rpc method handlers is not as handy as it is for web pages: for a start a valid xml-rpc request
is required to trigger execution of the code, which forces usage of an xml-rpc client instead of a
plain browser; then, the xml-rpc client in use might lack the capability of displaying the received
payload if it is not valid xml-rpc xml.

In order to overcome this issue, two helper methods are available in the Server class:
error_occurred($message) and debugmsg($message). The given messages will be added as xml
comments, using base64 encoding to avoid breaking xml, into the server’s responses, provided the
server’s debug level has been set to at least 1 for debug messages and 2 for error messages. The
xml-rpc client provided with this library can handle the specific format used by those xml
comments, and will display their decoded value when it also has been set to use an appropriate

19

debug level.

Fault reporting

In order to avoid conflict with error codes used by the library, fault codes used by your servers'
method handlers should start at the value indicated by the variable PhpXm1Rpc: :$xmlrpcerruser + 1.

Standard errors returned by the library include:

1 Unknown method

Returned if the server was asked to dispatch a method it didn’t know about

2 Invalid return payload

This error is actually generated by the client, not server, code, and signifies that a server
returned something it couldn’t understand. A more detailed error message is sometimes added
at the end of the phrase above.

3 Incorrect parameters

This error is generated when the server has signature(s) defined for a method, and the
parameters passed by the client do not match any of signatures.

4 Can’t introspect: method unknown

This error is generated by the server’s builtin system.* methods when any kind of introspection
is attempted on an undefined method.

5 Didn’t receive 200 OK from remote server

This error is generated by the client when a remote server doesn’t return HTTP/1.1 200 OK in
response to a request. A more detailed error report is added onto the end of the phrase above.

6 No data received from server

This error is generated by the client when a remote server returns HTTP/1.1 200 OK in response
to a request, but no response body follows the HTTP headers.

7 No SSL support compiled in

This error is generated by the client when trying to send a request with HTTPS and the cURL
extension is not available to PHP.

8 CURL error

This error is generated by the client when trying to send a request with HTTPS and the HTTPS
communication fails.

9-14, 18 multicall errors

These errors are generated by the server when something fails inside a system.multicall request.

15 Invalid request payload

20

16 No CURL support compiled in

17 Internal server error

19 No HTTP/2 support compiled in

20 Unsupported client option

100- XML parse errors

Returns 100 plus the XML parser error code for the fault that occurred. The faultString returned
explains where the parse error was in the incoming XML stream.

It is possible to change the numeric value of the above errors to support an xml-rpc "standard"
(possibly not widely known) for error codes, by making wuse of the call
PhpXmLlrpc\PhpXmlRpc: :useInteropFaults().

Reserved methods

In order to extend the functionality offered by XML-RPC servers without impacting on the protocol,
reserved methods are supported.

All methods starting with system. are considered reserved by the server. PHPXMLRPC itself
provides four special methods, detailed in this chapter.

Note that all Server objects will automatically respond to clients querying these methods, unless the
option 'allow_system_funcs' has been set to false before calling the service() method. This might
pose a security risk if the server is exposed to public access, e.g. on the internet.

system.getCapabilities

This method lists all the capabilities that the XML-RPC server has: the (more or less standard)
extensions to the xml-rpc spec that it implements. It takes no parameters.

system.listMethods

This method may be used to enumerate the methods implemented by the XML-RPC server.

The system.listMethods method requires no parameters. It returns an array of strings, each of
which is the name of a method implemented by the server.

system.methodSignature

This method takes one parameter, the name of a method implemented by the XML-RPC server.

It returns an array of possible signatures for this method. A signature is an array of types. The first

21

of these types is the return type of the method, the rest are parameters.

Multiple signatures (i.e. overloading) are permitted: this is the reason that an array of signatures is
returned by this method.

Signatures themselves are restricted to the top level parameters expected by a method. For instance
if a method expects one array of structs as a parameter, and it returns a string, its signature is
simply "string, array". If it expects three integers, its signature is "string, int, int, int".

For parameters that can be of more than one type, the 'undefined' string is supported.

If no signature is defined for the method, a not-array value is returned. Therefore, this is the way to
test for a non-signature, if $resp below is the response object from a method call to
system.methodSignature:

$v = $resp->value();
if ($v->kind0f() != "array") {

// then the method did not have a signature defined
}

See the demo/client/introspect.php demo included in this distribution for an example of using this
method.

system.methodHelp

This method takes one parameter, the name of a method implemented by the XML-RPC server.

It returns a documentation string describing the use of that method. If no such string is available,
an empty string is returned.

The documentation string may contain HTML markup.

system.multicall

This method takes one parameter, an array of request' struct types. Each request struct must
contain a methodName member of type string and a params member of type array, and corresponds to
the invocation of the corresponding method.

It returns a response of type array, with each value of the array being either an error struct
(containing the faultCode and faultString members) or the successful response value of the
corresponding single method call.

Global configuration

Many static variables are defined in the PhpxmlRpc\PhpXmlRpc class and other classes. Some of those
are meant to be used as constants (and modifying their value might cause unpredictable
behaviour), while some others can be modified in your php scripts to alter the behaviour of either
the xml-rpc client and server.

22

$xmlrpc_defencoding
Phpxm1Rpc\PhpXm1Rpc: : $xmlrpc_defencoding = "UTF8"

This variable defines the character set encoding that will be used by the xml-rpc client and server
to decode the received messages, when a specific charset declaration is not found (in the messages
sent non-ascii chars are always encoded using character references, so that the produced xml is
valid regardless of the charset encoding assumed).

Allowed values: 'UTF8', 'ISO-8859-1', 'ASCII'".

Note that the appropriate RFC actually mandates that XML received over HTTP without indication
of charset encoding be treated as US-ASCIL, but many servers and clients 'in the wild' violate the
standard, and assume the default encoding is UTF-8.

$xmlrpc_internalencoding
Phpxm1Rpc\PhpXm1Rpc:: $xmlrpc_internalencoding = "UTF-8"

This variable defines the character set encoding that the library uses to transparently encode into
valid XML the xml-rpc values created by the user and to re-encode the received xml-rpc values
when it passes them to the PHP application. It only affects xml-rpc values of string type. It is a
separate value from $xmlrpc_defencoding, allowing e.g. to send/receive xml messages encoded on-
the-wire in US-ASCII and process them as UTF-8. It defaults to the character set used internally by
PHP (unless you are running an MBString-enabled installation), so you should change it only in
special situations, if e.g. the string values exchanged in the xml-rpc messages are directly inserted
into / fetched from a database configured to return non-UTF8 encoded strings to PHP. Example
usage:

use PhpXmlRpc\Value;

// This is quite contrived. It is done because the asciidoc manual is saved in UTF-
8...

$1atin1String = utf8_decode('Hélene');

$v = new Value($1latiniString);

// Feel free to set this as early as possible

PhpxmlRpc\PhpXmlRpc: :$xmlrpc_internalencoding = 'IS0-8859-1";

// The xml-rpc value will be correctly serialized as the french name

$xmlSnippet = $v->serialize();

$xmlpc_double_precision

The number of decimal digits used to serialize Double values. This is a requirement stemming from

23

$xmlrpcName
Phpxm1Rpc\PhpXm1Rpc: : $xmlrpcName = "XML-RPC for PHP"

The string representation of the name of the PHPXMLRPC library. It is used by the Client for
building the User-Agent HTTP header that is sent with every request to the server. You can change
its value if you need to customize the User-Agent string.

$xmlrpcVersion
PhpXm1Rpc\PhpXm1Rpc:: $xmlrpcVersion = "4.11.1"

The string representation of the version number of the PHPXMLRPC library in use. It is used by the
Client for building the User-Agent HTTP header that is sent with every request to the server. You
can change its value if you need to customize the User-Agent string.

$xmlrpc_null_extension
Phpxm1Rpc\PhpXm1Rpc:: $xmlrpc_null_extension = FALSE

When set to TRUE, the lib will enable support for the <NIL/> (and <EX:NIL/>) xml-rpc value, as per the
extension to the standard proposed here. This means that <NIL> and <EX:NIL/> tags received will be
parsed as valid xml-rpc, and the corresponding xmlrpcvals will return "null" for scalarTyp().

$xmlrpc_null_apache_encoding
Phpxm1Rpc\PhpXm1Rpc: : $$xmlrpc_null_apache_encoding = FALSE

When set to TRUE, php NULL values encoded into Value objects will get serialized using the
<EX:NIL/> tag instead of <NIL/>. Please note that both forms are always accepted as input regardless
of the value of this variable.

Errors and Logging

Many of the classes in this library by default use the php error logging facilities to log errors in case
there is some unexpected but non-fatal event happening, such as f.e. when an invalid xml-rpc
request or response are received. Going straight to the log instead of triggering a php warning or
error has the advantage of not breaking the xml-rpc output when the issue is happening within the
context of an xmlrpc-server and display_errors is enabled.

In case things are not going as you expect, please check the error log first for the presence of any
messages from PHPXMLRPC which could be useful in troubleshooting what is going on under the
hood.

24

You can customize the way error messages are traced via the static method setlLogger available for
the classes Charset, Client, Encoder, HTTP, Request, Server, Value and XMLParser. To inject a custom
logger to all classes supporting it, in a simplified manner, method PhpXmlRpc: :setlLogger is available.
Last but not least, be aware that the same Logger is also responsible for echoing to screen the debug
messages produced by the Client when its debug level has been set, and for logging deprecation
messages when they have been activated; this allows to customize the debugging process in the
same way.

Helper classes and functions

PHPXMLRPC contains some helper classes which you can use to make processing of XML-RPC
requests easier.

Date handling

The XML-RPC specification has this to say on dates:

Don’t assume a timezone. It should be specified by the server in its
documentation what assumptions it makes about timezones.

Unfortunately, this means that date processing isn’t straightforward. Although XML-RPC uses ISO
8601 format dates, it doesn’t use the timezone specifier.

We strongly recommend that in every case where you pass dates in XML-RPC calls, you use UTC
(GMT) as your timezone. Most computer languages include routines for handling GMT times
natively, and you won’t have to translate between timezones.

For more information about dates, see ISO 8601: The Right Format for Dates, which has a handy
link to a PDF of the ISO 8601 specification. Note that XML-RPC uses exactly one of the available
representations: CCYYMMDDTHH: MM: SS.

is08601_encode
string is08601_encode(string $time_t, int $utc = 0)

Returns an ISO 8601 formatted date generated from the UNIX timestamp $time_t, as returned by the
PHP function time().

The argument $utc can be omitted, in which case it defaults to 0. If it is set to 1, then the function
corrects the time passed in for UTC. Example: if you’re in the GMT-6:00 timezone and set $utc, you
will receive a date representation six hours ahead of your local time.

The included demo program demo/client/vardemo.php includes a demonstration of this function.

is08601_decode

25

http://www.uic.edu/year2000/datefmt.html

int is08601_decode(string $isoString, int $utc = @)

Returns a UNIX timestamp from an ISO 8601 encoded time and date string passed in. If $utc is 1
then $isoString is assumed to be in the UTC timezone, and thus the result is also UTC: otherwise, the
timezone is assumed to be your local timezone and you receive a local timestamp.

Decoding xml
Value | Request | Response Encoder::decodeXml(string $xml, array $options)

Decodes the xml representation of either an xml-rpc request, response or single value, returning
the corresponding phpxmlrpc object, or false in case of an error.

The options parameter is optional. If specified, it must consist of an array of options to be enabled
in the decoding process. At the moment, no option is supported.

Example:

$text = '<value><array><data><value>Hello world</value></data></array></value>';
$val = $encoder::decodeXml($text);
if ($val)
echo 'Found a value of type ' . $val->kind0f();
else
echo 'Found invalid xml';

Transferring PHP objects over XML-RPC

In case there is a (real) need to transfer php object instances over XML-RPC, the "usual” way would
be to use a serialize call on the sender side, then transfer the serialized string using a base64 xml-
rpc value, and call unserialize on the receiving side.

The phpxmlrpc library does offer an alternative method, which might offer marginally better
performances and ease of use, by usage of PhpXmlRpc\Encoder::encode and
PhpXmlRpc\Encoder: :decode:

1. on the sender side, encode the desired object using option 'encode_php_objs'. This will lead to
the creation of an xml-rpc struct value with an extra xml attribute: "php_class"

2. on the receiver side, decode the received Value using option 'decode_php_objs'. The xml-rpc
struct with the extra attribute will be converted back into an object of the desired class instead
of an array

WARNING: please take extreme care before enabling the 'decode_php_objs' option: when php
objects are rebuilt from the received xml, their constructor function will be silently invoked. This
means that you are allowing the remote end to trigger execution of uncontrolled PHP code on your
server, opening the door to code injection exploits. Only enable this option when you trust

26

completely the remote server/client. DO NOT USE THIS WITH UNTRUSTED USER INPUT

Note also that there are multiple limitations to this: the same PHP class definition must be available
on both ends of the communication; the class constructor will be called but with no parameters at
all, and methods such as __unserialize or __wakeup will not be called. Also, if a different toolkit than
the phpxmlrpc library is used on the receiving side, it might reject the generated xml as invalid.

Code generation, Proxy objects & co.

For the extremely lazy coder, helper functions have been added that allow to expose any pre-
existing php functions (or all the public methods of a Class) as xml-rpc method handlers, and
convert a remotely exposed xml-rpc method into a local php function - or a set of xml-rpc methods
into a php class. This allows to use the library in a "transparent” fashion, ie. without having to deal
with the Value, Client, Request and Response classes - but it comes with many gotchas and
limitations.

wrapXmlrpcMethod

Closure|string|false PhpXmlRpc\Wrapper::wrapXmlrpcMethod(Client $client, string
$methodName, array $extraOptions = [])

Given a pre-built client pointing to a given xml-rpc server and a method name, creates a php
"wrapper" function that will call the remote method and return results using native php types for
both params and results. The generated php function will return a Response object by default for
failed xml-rpc calls.

The server must support the system.methodSignature xml-rpc method call for this function to work.

The client param must be a valid Client object, previously created with the address of the target
xml-rpc server, and to which the preferred options for http communication have been set.

The optional parameters can be passed as key,value pairs in the $extra_options argument.

The signum option has the purpose of indicating which method signature to use, if the given xml-rpc
method has multiple signatures (defaults to 0).

The timeout and protocol options are the same as the arguments with same name of the
(Client::send() method.

If set, the new_function_name option indicates which name should be used for the generated
function. In case it is not set the function name will be auto-generated.

If the return_source option is set, the function will return the php source code of the wrapper
function, instead of evaluating it. This useful to save the code and use it later as stand-alone xml-rpc
client with no performance hit and no dependency on system.methodSignature.

If the throw_on_fault option is set, the unction will throw an exception instead of returning a
Response object in all cases of communication errors or xml-rpc faults.

27

If the encode_php_objs option is set, instances of php objects later passed as parameters to the newly
created function will receive a 'special' treatment that allows the server to rebuild them as php
objects instead of simple arrays. Note that this entails using a "slightly augmented" version of the
xml-rpc protocol (i.e. using element attributes), which might not be understood by xml-rpc servers
implemented using other libraries; it works well when the server is built on top of phpxmlrpc.

If the encode_nulls option is set, php null values passed as arguments to the generated function will
be encoded as xml-rpc '<NIL/>' values instead of being encoded as empty string values.

If the decode_php_objs option is set, instances of php objects that have been appropriately encoded
by the server using a corresponding option will be deserialized as php objects instead of simple
arrays (the same class definition should be present server side and client side).

Note that this might pose a security risk, since in order to rebuild the object instances their
constructor method has to be invoked, and this means that the remote server can trigger execution
of unforeseen php code on the client: not really a code injection, but almost. Please enable this
option only when you absolutely trust the remote server.

In case of an error during generation of the wrapper function, FALSE is returned.

Known limitations: the server must support system.methodsignature for the desired xml-rpc
method; for methods that expose multiple signatures, only one can be picked; for remote calls with
nested xml-rpc params, the caller of the generated php function has to encode on its own the
params passed to the php function if these are structs or arrays whose (sub)members include
values of type base64.

Note: calling the generated php function 'might' be slow: a new xml-rpc client is created on every
invocation and an xmlrpc-connection opened+closed.

An extra 'debug' argument is appended to the argument list of the generated php function, useful
for debugging purposes.

Example usage:

use PhpXmlRpc\Client;
use PhpXmlRpc\Wrapper;

$c = new Client('https://phpxmlrpc.sourceforge.io/server.php');
$function = new Wrapper()->wrapXmlrpcMethod($client, 'examples.getStateName');

if (!$function)
die('Failed introspecting remote method');
else {
$stateNo = 15;
$stateName = $function($stateNo);
// NB: in real life, you should make sure you escape the received data with
// ‘htmlspecialchars® when echoing it as html
if (is_a($stateName, 'Response')) { // call failed
echo 'Call failed: '.$stateName->faultCode().'. Calling again with debug on..."';

28

$function($stateNo, true);
}

else
echo "OK, state nr. $stateNo is $stateName";

wrapXmlrpcServer

string|array|false PhpXmlRpc\Wrapper::wrapXmlrpcServer(Client $client, array
$extraOptions = [])

Similar to wrapXmlrpcMethod, but instead of creating a single php function this creates a php class,
whose methods match all the xml-rpc methods available on the remote server.

Note that a simpler alternative to this, doing no type-checks on the arguments of the invoked
methods, and providing no support for IDE auto-completion, can be found in the
demo/client/proxy.php demo file.

wrapPhpFunction

array|false PhpXmlRpc\Wrapper::wrapPhpFunction(Callable $callable, string $newFuncName

= '', array $extraOptions = [])

Given a user-defined PHP function, create a PHP 'wrapper' function that can be exposed as xml-rpc
method from a Server object and called from remote clients, and return the appropriate definition
to be added to a server’s dispatch map.

The optional $newFuncName specifies the name that will be used for the auto-generated function.

Since php is a typeless language, to infer types of input and output parameters, it relies on parsing
the phpdoc-style comment block associated with the given function. Usage of xml-rpc native types
(such as datetime.dateTime.iso8601 and base64) in the docblock @param tag is also allowed, if you
need the php function to receive/send data in that particular format (note that base64
encoding/decoding is transparently carried out by the lib, while datetime values are passed around
as strings).

Known limitations: only works for user-defined functions, not for PHP internal functions (reflection
does not support retrieving number/type of params for those); the wrapped php function will not
be able to programmatically return an xml-rpc error response.

If the return_source option parameter is set, the function will return the php source code to build
the wrapper function, instead of evaluating it (useful to save the code and use it later in a stand-
alone xml-rpc server). It will b e in the stored in the source member of the returned array.

If the suppress_warnings optional parameter is set, any runtime warning generated while processing
the user-defined php function will be caught and not be printed in the generated xml response.

29

If the encode_nulls option is set, php null values returned by the php function will be encoded as
xml-rpc '<NIL/>' values instead of being encoded as empty string values.

If the extra_options array contains the encode_php_objs value, wrapped functions returning php
objects will generate "special” xml-rpc responses: when the decoding of those responses is carried
out by this same lib, using the appropriate param in php_xmlrpc_decode(), the objects will be
rebuilt.

In short: php objects can be serialized, too (except for their resource members), using this function.
Other libs might choke on the very same xml that will be generated in this case (i.e. it has a
nonstandard attribute on struct element tags)

If the decode_php_objs optional parameter is set, instances of php objects that have been
appropriately encoded by the client using a coordinate option will be deserialized and passed to the
user function as php objects instead of simple arrays (the same class definition should be present
server side and client side).

Note that this might pose a security risk, since in order to rebuild the object instances their
constructor method has to be invoked, and this means that the remote client can trigger execution
of unforeseen php code on the server: not really a code injection, but almost. Please enable this
option only when you trust the remote clients.

Example usage:

use PhpXmlRpc\Server;
use PhpXmlRpc\Wrapper;

/**
* State name from state number decoder. NB: do NOT remove this comment block.

* @param integer $stateno the state number
* @return string the name of the state (or an error description)

*/
function findstate($stateno)
{
$stateNames = array(...);
if (isset($stateNames[$stateno-1]))
{
return $stateNames[$stateno-1];
}
else
{
return "I don't have a state for the index '" . $stateno . "'";
}
}

// wrap php function, build xml-rpc server
$methods = array();
$findstate_sig = new Wrapper()->wrapPhpFunction('findstate');
if ($findstate_sig)
$methods['examples.getStateName'] = $findstate_sig;

30

$srv = new Server($methods);

Please note that similar results to the above, i.e. adding to the server’s dispatch map an existing php
function which is not aware of xml-rpc, can be obtained without the Wrapper class and the need
for introspection, simply by calling $server->setOption('functions_parameters_type', phpvals') (see
chapter Automatic type conversion). The main difference is that, using the Wrapper class, you get
for free the documentation for the xml-rpc method.

wrapPhpClass

array|false PhpXmlRpc\Wrapper::wrapPhpClass(string|object $className, array
$extraOptions = [])

Similar to wrapPhpFunction, it works on all public methods of a given object/class. The server must
support both the system.methodList and system.methodSignature xml-rpc method calls for this
function to work.

Code generation

Using the Wrapper class to create some code and execute it directly inline has the worst possible
performances, as it relies on either using introspection of existing php code or making extra calls to
the xml-rpc introspection methods of the server. It also does not provide the benefit of allowing
IDEs to inspect the generated code and provide auto-completion for it, nor for security-minded
developers to be able to examine it before executing it. It is thus recommended to always use the
return_source option when using the Wrapper methods, and save to disk the generated code instead
of executing it directly.

Other tools

Other tools exist which share the same goal of generating php code implementing xml-rpc clients or
server, starting from either an Interface Definition Language or existing php code.

One such project, not affiliated with this library, can be found at: https://github.com/mumitrOll/xrdl

Performances

Although the library is not designed to be the most memory-efficient nor the most fast possible
implementation of the xml-rpc protocol, care is taken not to introduce unnecessary bloat.

The extras/benchmark.php file is used to assess the changes to performance for each new release,
and to compare the results obtained by executing the same operation using different options, such
as f.e. manual vs. automatic encoding of php values to Value objects. You will have to install the
library with the Compose option --prefer-install=source in order to have it available locally.

31

https://github.com/mumitr0ll/xrdl

Performance optimization tips

* avoid spending time converting the received xml into Value objects, instead have the library
pass primitive php values directly to your application by calling $client-
>setOption('return_type', XMLParser: :RETURN_PHP) and $server-
>setOption('functions_parameters_type', XMLParser::RETURN_PHP)

* reduce the encoding of non-ascii characters to character entity references both by setting
PhpXmlRpc::$xmlrpc_internalencoding = "UTF-8' and calling $client-
>setOption('request_charset_encoding', "UTF-8") / $server-
>setOption('response_charset_encoding', 'UTF-8')

* if the server you are communicating with does support it, and the requests you are sending are
big, or the network slow, you should enable compression of the requests, via setting $client-
>setOption('request_compression', true)

 add a call $server->setDebug(0)

* add a call $client->setDebug(-1) - unless you need to access the response’s http headers or
cookies

* boxcar multiple xml-rpc calls into a single http request by making usage of the system.multicall
capability. Just passing in an array of Request objects to $client->send() is usually enough. If the
server you are talking to does not support system.multicall, see the demo/client/parallel.php
example instead for how to send multiple requests in parallel using cURL

Upgrading

our Backward Compatibility promise

The PHPXMLRPC library adheres to Semantic Versioning principles, as outlined in
https://semver.org/.

In short, Semantic Versioning means that only major releases (such as 3.0, 4.0 etc.) are allowed to
break backward compatibility. Minor releases (such as 4.1, 4.2 etc.) may introduce new features, but
must do so without breaking the existing API of the given release branch (4.x in the previous
example).

However, backward compatibility comes in many different flavors. In fact, almost every change
made to the library can potentially break an application. For example: * if we add a new argument
to an existing class method, this will break an application which extended this class and
reimplemented the same method, as it will have to add the new argument as well - even if we give
it a default value * if we add a new method to a class, this will break an application which extended
this class and added the same method, but with a different method signature * if we add a new
protected property to a class, this will break an application which extended this class and added the
same method property, and uses it for a different purpose * etc...

The guiding principle used to inform the development process and the version number applied to
new releases is: * we adhere to strict Semantic Versioning Backward Compatibility rules for
consumers of the library. * we strive to maintain Semantic Versioning Backward Compatibility for

32

https://semver.org/

developers extending the library, for as long as humanly possible, but do not guarantee it 100% The
distinction between consumers and extenders is defined as: an extender is anyone implementing a
subclass of any of the PHPXMLRPC classes, or replacing it wholesale with his/her own
implementation.

In detail: * to avoid breaking compatibility with extenders, the library will not implement strict
type declarations. This might include weird practices such as declaring interfaces but not checking
or enforcing them at the point of use * new classes, interfaces, traits, exceptions, class methods,
constants and properties are allowed to be added in minor versions. NB: this includes adding magic
methods __get, __set, __call, etc... to classes which did not have them * new arguments to
functions and methods are allowed to be added in minor versions, provided they have a default
value * types of function and method arguments are only allowed to be changed in major versions *
return types of functions and methods are only allowed to be changed in major versions * existing
function and method arguments, class methods and properties, interfaces, traits and exceptions
might be deprecated in minor versions * existing class methods and properties might be removed
or renamed in minor versions, provided that their previous incarnations are kept working via
usage of php magic functions __get, __set, __call and friends * exceptions thrown by the library
are allowed to be moved to a subclass of their previous class in minor versions * exception
messages and error messages are not guaranteed to be stable. They mostly get more detailed over
time, but might occasionally see complete rewording * any class, method, property, interface,
exception and constant documented using the @internal tag is considered not to be part of the
library’s API and might not follow the rules above * using deprecated methods and properties will
eventually lead to deprecation warnings being generated - but that is not yet enabled by default (it
can be enabled by the forward-looking developer, though)

Finally, always read carefully the NEWS file before upgrading. It is the single most important source
of truth regarding changes to the API (after the code itself, of course)

Upgrading to version 4

If you are upgrading to version 4 from version 3 or earlier you have two options:

1. adapt your code to the new API (all changes needed are described in https://github.com/gggeek/
phpxmlrpc/blob/master/doc/api_changes_v4.md)

2. use instead the compatibility layer which is provided. Instructions and pitfalls described at
https://github.com/gggeek/phpxmlrpc/blob/master/doc/api_changes_v4.md#enabling-
compatibility-with-legacy-code

In any case, read carefully the docs available online and report back any undocumented issue using
GitHub.

Upgrading to version 2

The following two functions have been deprecated in version 1.1 of the library, and removed in
version 2, in order to avoid conflicts with the PHP xml-rpc extension, which also defines two
functions with the same names.

The following documentation is kept for historical reference:

33

https://github.com/gggeek/phpxmlrpc/blob/master/doc/api_changes_v4.md
https://github.com/gggeek/phpxmlrpc/blob/master/doc/api_changes_v4.md
https://github.com/gggeek/phpxmlrpc/blob/master/doc/api_changes_v4.md#enabling-compatibility-with-legacy-code
https://github.com/gggeek/phpxmlrpc/blob/master/doc/api_changes_v4.md#enabling-compatibility-with-legacy-code

xmlrpc_decode

mixed mlrpc_decode(Value $xmlrpc_val)
Alias for php_xmlrpc_decode.
xmlrpc_encode

Value xmlrpc_encode(mixed $phpval)
Alias for php_xmlrpc_encode.

Bundled debugger

A webservice debugger is included in the library to help during development and testing.

Debugger setup

NB to avoid turning your webserver into an open relay for http calls, please keep the debugger
outside your webserver’s document root by default / in production deployments!

In order to make usage of the debugger, you will need to have a webserver configured to run php
code, and make it serve the /debugger folder within the library.

The simplest method is to start the php command-line webserver, but if you do so, you should make
use of the experimental multi-process setup. Ex:

cd debugger; PHP_CLI_SERVER_WORKERS=2 php -S 127.0.0.1:8081

then access the debugger by pointing your browser at http:/127.0.0.1:8081

Debugger usage

The interface should be self-explicative enough to need little documentation.

34

http://127.0.0.1:8081

U0 MMLRPC D bigpes - Mezilla Fiefoe
Fle Edt Wewm Hptoy Pookewks Toor e

-3 I e ey r— Lo

HMLRPC & ¢ O I50MNRPC Debugger (based on the PHP-3MLRPC librany)

Targal sorves Addrwen: o alyggr Fort: Path: g _ovalarmlrpoian
ACHON it avadlabls methode (= Omecrine maghng Exmccie swead Ganaraba rivh for mathad cal O
Plmrtbepd Hame Fapkiad | Ewmuha
CEant options Shas debug fol | gy Termsingt Frobotdll | TR D
BUTH L mams et Tipe
R Werly Hoo's CA Wiy ot e Tt il
FROEY Berver Proey wseer Fraoiy pad
COMPRESE10N At pane - RESDANSE: | ppnec w
COCKIES Formnet) "oopkil=ivahiel, faklel=vplios

List of avallable methods on server hittp: / flocalhost/ smirpc_ovs fsmirpefserver.php ..
EMLEAC calll{=) OF [1,55 smes,)

11 My 20T 17:31:52
L e pescroea]
axasplay. patScataMasa (]9] |
axxnplan. parebylye [Descrize
azanplay. wdduun Diassil |
g wdidiema dookde [Descrios |
axamplay. socirgecha Dl | oF.

To make sure that the debugger is working properly, you can use it make f.e. a "list available
methods" call against the public demo server available at: Address: gggeek.altervista.org, Path:
/sw/xmlrpc/demo/server/server.php

The most useful feature of the debugger is without doubt the "Show debug info" option. It allows to
have a screen dump of the complete http communication between client and server, including the
http headers as well as the request and response payloads, and is invaluable when troubleshooting
problems with charset encoding, authentication or http compression.

Using the debugger against a local server

If the webserver used to run the debugger is prevented from making http calls to the internet at
large for security or connectivity reasons, one way to make sure that it is working as expected and
get acquainted with the library’s workings is to test against the "demo" server which comes
bundled with the library:

* install the library using the Composer option --prefer-install=source, to make sure the demo
files are also downloaded

* make sure both the /debugger and the /demo folders are within your webserver’s root folder, e.g.
run PHP_CLI_SERVER_WORKERS=2 php -S 127.0.0.1:8081 from the root of the phpxmlrpc library

 access the debugger at http:/127.0.0.1:8081/debugger and use it with Address: 127.0.0.1, Path:
/demo/server/server.php

Debugger extension

The debugger can take advantage of the J[SXMLRPC library’s visual editor component to allow easy
mouse-driven construction of the payload for remote methods. To enable the extra functionality, it
has have to be downloaded separately and copied to the debugger directory. The easiest way to

35

http://127.0.0.1:8081/debugger

achieve that is to run the command
./taskfile setup_debugger_visualeditor

If that command does not work on your installation (it has not been widely tested on MacOS, and it
does not support Windows) and you have Node]S installed, you can achieve the same by executing

cd debugger && npm install @jsxmlrpc/jsxmlrpc

Alternative debugger setup

Since November 2022, the same interactive xml-rpc debugger which is bundled with this library is
also available as a Docker Container image, making it easy to use it as a standalone tool in any
environment, without the need for having PHP or Composer installed.

Installation and usage instructions can be found at https://github.com/gggeek/phpxmlrpc-debugger

Running tests

The recommended way to run the library’s test suite is via the provided Docker containers. A handy
shell script is available that simplifies usage of Docker.

The full sequence of operations is:

./tests/ci/vm.sh build
./tests/ci/vm.sh start
./tests/ci/vm.sh runtests
./tests/ci/vm.sh stop

and, once you have finished all testing related work:
./tests/ci/vm.sh cleanup

By default, tests are run using php 7.4 in a Container based on Ubuntu 20 Focal. You can change the
version of PHP and Ubuntu in use by setting the environment variables PHP_VERSION and
UBUNTU_VERSION before building the Container.

To generate the code-coverage report, run ./tests/ci/vm.sh runcoverage

Note: to reduce the size of the download, the test suite is not part of the default package installed
with Composer. In order to have it onboard, install the library using Composer option --prefer
-install=source.

36

https://github.com/gggeek/phpxmlrpc-debugger

Frequently Asked Questions

My client returns "XML-RPC Fault #2: Invalid return
payload: enable debugging to examine incoming
payload": what should I do?

The response you are seeing is a default error response that the client object returns to the php
application when the server did not respond to the call with a valid xml-rpc response.

The most likely cause is that you are not using the correct URL when creating the client object, or
you do not have appropriate access rights to the web page you are requesting, or some other
common http misconfiguration.

To find out what the server is really returning to your client, you have to enable the debug mode of
the client, using $client>setDebug(1). You can also inspect the http connection information in
$response~httpResponse() - see below

How can I save to a file the xml of the xml-rpc
responses received from servers?

If what you need is to save the responses received from the server as xml, you have multiple
options:

1 - use the Response’s httpResponse method

$resp = $client->send($msqg);
if (!$resp->faultCode())
$data_to_be_saved = $resp->httpResponse()['raw_data'];

Note that, while the data saved this way is an accurate copy of what is received from the server, it
might not match what gets parsed into the response’s value, as there is some filtering involved,
such as stripping of comments junk from the end of the message, character set conversion, etc...

Note also that, in the future, this might need some debug mode to be enabled in order to work.
2 - use the serialize method on the Response object.
$resp = $client->send($msq);

if (!$resp->faultCode())
$data_to_be_saved = $resp->serialize();

Note that this will not be 100% accurate, since the xml generated by the response object can be
different from the xml received, especially if there is some character set conversion involved, or
such (e.g. if you receive an empty string tag as "<string/>", serialize() will output

37

"<string></string>"), or if the server sent back as response something invalid (in which case the xml
generated client side using serialize() will correspond to the error response generated internally by
the lib).

3 - set the client object to return the raw xml received instead of the decoded objects:

$client = new Client($url);

$client->return_type = 'xml';

$resp = $client->send($msqg);

if (!$resp->faultCode())
$data_to_be_saved = $resp->value();

Note that using this method the xml response will not be parsed at all by the library, only the http
communication protocol will be checked. This means that xml-rpc responses sent by the server that
would have generated an error response on the client (e.g. malformed xml, responses that have
faultCode set, etc...) now will not be flagged as invalid, and you might end up saving not valid xml
but random junk...

How can I save to a file the xml of the xml-rpc
requests/responses generated from the library?

Classes Request, Response and Value all have a method serialize() which can be used to obtain the
xml representation of their value.

Note that, if what you want is to check with absolute certainty what is being sent over the wire, you
are better off using the setDebug method in both the client and the server.

Is there any limitation on the size of the requests /
responses that can be successfully sent?

Yes. But there is no hard figure to be given; it most likely will depend on the version of PHP in usage
and its configuration.

Keep in mind that this library is not optimized for speed nor for memory usage. Better alternatives
exist when there are strict requirements on throughput or resource usage, such as the php native
xmlrpc extension (see the PHP manual for more information).

Keep in mind also that HTTP is probably not the best choice in such a situation, and XML is a deadly
enemy. CSV formatted data over socket would be much more efficient. Or rpc protocols Googles'
ProtoBuffer.

If you really need to move a massive amount of data around, and you are crazy enough to do it
using phpxmlrpc, your best bet is to bypass usage of the Value objects, at least in the decoding
phase, and have the server (or client) object return to the calling function directly php values (see
Client option return_type and Server option functions_parameters_types for more details, and the
tips in the Performances section).

38

How to send custom XML as payload of a method call

Unfortunately, at the time the XML-RPC spec was designed, support for namespaces in XML was not
as ubiquitous as it became later. As a consequence, no support was provided in the protocol for
embedding XML elements from other namespaces into an xml-rpc request.

To send an XML "chunk" as payload of a method call or response, two options are available: either
send the complete XML block as a string xml-rpc value, or as a base64 value. Since the '<' character
in string values is encoded as '<' in the xml payload of the method call, the XML string will not
break the surrounding xml-rpc, unless characters outside the assumed character set are used. The
second method has the added benefits of working independently of the charset encoding used for
the xml to be transmitted, and preserving exactly whitespace, whilst incurring in some extra
message length and cpu load (for carrying out the base64 encoding/decoding).

See the example given in demo/client/which.php for the possibility of sending "standard xml-rpc"
xml which was generated outside the phpxmlrpc library.

My server (client) returns an error whenever the
client (server) sends accented characters

To be documented...

Can I use the MS Windows character set?

If the data your application is using comes from a Microsoft application, there are some chances
that the character set used to encode it is CP1252 (the same might apply to data received from an
external xml-rpc server/client, but it is quite rare to find xml-rpc toolkits that encode to CP1252
instead of UTF8). It is a character set which is "almost" compatible with ISO 8859-1, but for a few
extra characters.

PHPXMLRPC always supports the ISO-8859-1 and UTF-8 character sets, plus any character sets
which are available via the mbstring php extension.

To properly encode outgoing data that is natively in CP1252, you will have to make sure that
mbstring is enabled, then set

PhpXm1Rpc\PhpXm1Rpc: :$xmlrpc_internalencoding = 'Windows-1252";

somewhere in your code, before any outgoing data is serialized.

The same setting will also ensure that the data which is fed back to your application will also be
transcoded by the library into the same character set, regardless by the character set used over the
wire.

This feature 1is available since release 4.10, and can be seen in action in file
demo/client/windowscharset.php

39

https://www.php.net/manual/en/book.mbstring.php

Does the library support using cookies / http sessions?

In short: yes, but a little coding is needed to make it happen.

The code below uses sessions to e.g. let the client store a value on the server and retrieve it later.

use PhpXmlRpc/Request;
use PhpXmlRpc/Value;

$resp = $client->send(new Request(
'‘registervalue’,
array(new Value('foo'), new Value('bar')))
¥
if (!$resp->faultCode())
{

$cookies = $resp->cookies();
// nb: make sure to use the correct session cookie name
if (array_key_exists('PHPSESSID', $cookies))

{
$session_id = $cookies['PHPSESSID']['value'];

// do some other stuff here...

// ...also, we should check for the cookie validity by looking at things such
as its expiration, domain, etc...

$client->setcookie('PHPSESSID', $session_id);

$val = $client->send(new Request('doStuff', array(new Value('foo')));

Server-side sessions are handled normally like in any other php application. Please see the php
manual for more information about sessions.

NB: unlike web browsers, not all xml-rpc clients support usage of http cookies. If you have troubles
with sessions and control only the server side of the communication, please check with the makers
of the xml-rpc client in use.

Does the library support following http redirects?

Yes, but only when using cURL for transport.

$client->setOption(Client::0PT_USE_CURL, \PhpXmlRpc\Client::USE_CURL_ALWAYS);
$client->setOption(Client::OPT_EXTRA_CURL_OPTS, [CURLOPT_FOLLOWLOCATION => true,
CURLOPT_POSTREDIR => 3]);

40

Does the library support setting custom cURL options?

Yes. Use $client->setOption(Client::0PT_USE_CURL, \PhpXmlRpc\Client::USE_CURL_ALWAYS) then use
the Client method $client->setOption(Client::0PT_EXTRA_CURL_OPTS, array(...))

Does the server support cross-domain xml-rpc calls?

It is trivial to make phpxmlrpc servers support CORS preflight requests, allowing them to receive
xml-rpc requests sent from browsers visiting different domains. However, this feature is not
enabled out of the box, for obvious security concerns. See at the top of the file
demo/server/server.php for an example of enabling that.

How to enable long-lasting method calls

To be documented...

Integration with the PHP xmlrpc extension

In short: for the fastest execution possible, you can enable the php native xmlrpc extension, and
use it in conjunction with phpxmlrpc. The following code snippet gives an example of such
integration:

/*** client side ***/
$c = new Client('https://phpxmlrpc.sourceforge.io/server.php');

// tell the client to return raw xml as response value
$c->setOption('return_type', 'xml');

// let the native xmlrpc extension take care of encoding request parameters
$r = $c->send(xmlrpc_encode_request('examples.getStateName', (int)$_POST['stateno']));

if ($r->faultCode()) {
// HTTP transport error
echo 'Got error ' . $r->faultCode();
} else {
// HTTP request 0K, but XML returned from server not parsed yet
$v = xmlrpc_decode($r->value());
// check if we got a valid xml-rpc response from server
if ($v === NULL)
echo 'Got invalid response’;
else
// check if server sent a fault response
if (xmlrpc_is_fault($v))
echo 'Got xml-rpc fault '.$v['faultCode'];
else
echo'Got response: '.htmlentities($v);

41

NB: Please note that, as of PHP 8.2, the native xmlrpc extension has been moved to Pecl, and it is
not bundled in the stock PHP builds anymore. Moreover, its development has all but ceased, and its
usage is discouraged.

Substitution of the PHP xmlrpc extension

Yet another interesting situation is when you are using a ready-made php application, that provides
support for the XML-RPC protocol via the native php xmlrpc extension, but the extension is not
available on your php install (e.g. because of shared hosting constraints, or because you are using
php 8.2 or later).

Since version 2.1, the PHPXMLRPC library provides a compatibility layer that aims to be 100%
compliant with the xmlrpc extension API. This means that any code written to run on the extension
should obtain the exact same results, albeit using more resources and a longer processing time,
using the PHPXMLRPC library and the extension compatibility module.

The module was originally part of the EXTRAS package, available as a separate download from the
sourceforge.net website; it has since become available as Packagist package phpxmlrpc/polyfill-
xmlrpc and can be found on GitHub at https://github.com/gggeek/polyfill-xmlrpc

Appendix A: Files in the distribution

debugger/*

a graphical debugger which can be used to test calls to xml-rpc servers

demo/*

example code for implementing both client and server functionality. Only included when
installing with --prefer-install=source

doc/*

the documentation, including this manual, and the list of API changes between versions 3 and 4

extras/*

php utility scripts, such as a benchmark suite and an environment compatibility checker. Only
included when installing with --prefer-install=source

lib/*
a compatibility layer for applications which still rely on version 3 of the API

src/*

the XML-RPC library classes. You can autoload these via Composer, or via a dedicated Autoloader
class

tests/*

the test suite for the library, written using PhpUnit, and the configuration to run it in a local
Docker container. Only included when installing with --prefer-install=source

42

https://github.com/gggeek/polyfill-xmlrpc

Note the standard procedure to download locally the demo and test files is to use Composer with
the option --prefer-install=source on the command line. That requires to have git installed. If that
is not the case on your server, you might be able to download the complete source code from
GitHub with other tools, such as f.e. TortoiseSVN. Starting with release 4.9.4, the demo files are also
available for download as a separate tarball from the releases page on GitHub.

Note when downloading the demo files, make sure that the demo folder is not directly accessible
from the internet, i.e. it is not within the webserver root directory.

Appendix B: Exception hierarchy

Exception
*-PhpXm1lRpc/Exception
| -PhpXm1Rpc/Exception/FaultResponseException.php
| -PhpXm1Rpc/Exception/ParsingException.php
| |-PhpXmlRpc/Exception/XmlException.php
| *-PhpXmlRpc/Exception/XmlRpcException.php
| -PhpXm1Rpc/Exception/TransportException.php
| *-PhpXmlRpc/Exception/HttpException.php
| -PhpXm1Rpc/Exception/ServerException.php
| *-PhpXmlRpc/Exception/NoSuchMethodException.php
| -PhpXm1Rpc/Exception/StateErrorException.php
| -PhpXm1Rpc/Exception/TypeErrorException.php
*-PhpXmlRpc/Exception/ValueErrorException.php

Note not all of the above exceptions are in use at the moment, but they might be in the future

43

	XML-RPC for PHP User Manual
	Table of Contents
	A foreword
	Requirements and installation instructions
	API usage
	Type conversion
	Manual type conversion: PHP to XML-RPC
	Manual type conversion: XML-RPC to PHP
	Automatic type conversion: PHP to XML-RPC
	Automatic type conversion: XML-RPC to PHP
	Notes on types
	strict parsing vs. lenient parsing

	Client
	Client creation
	Sending requests
	Automatic decoding of the response’s value
	Troubleshooting failed calls
	Modifying the client’s behaviour
	Sending multiple requests

	Server
	The dispatch map
	Method signatures
	Method handler functions
	Delaying the server response
	Modifying the server’s behaviour
	Troubleshooting server’s method handlers

	Fault reporting
	Reserved methods
	system.getCapabilities
	system.listMethods
	system.methodSignature
	system.methodHelp
	system.multicall

	Global configuration
	$xmlrpc_defencoding
	$xmlrpc_internalencoding
	$xmlpc_double_precision
	$xmlrpcName
	$xmlrpcVersion
	$xmlrpc_null_extension
	$xmlrpc_null_apache_encoding

	Errors and Logging
	Helper classes and functions
	Date handling
	Decoding xml

	Transferring PHP objects over XML-RPC
	Code generation, Proxy objects & co.
	wrapXmlrpcMethod
	wrapXmlrpcServer
	wrapPhpFunction
	wrapPhpClass
	Code generation
	Other tools

	Performances
	Performance optimization tips

	Upgrading
	our Backward Compatibility promise
	Upgrading to version 4
	Upgrading to version 2
	xmlrpc_decode
	xmlrpc_encode

	Bundled debugger
	Debugger setup
	Debugger usage
	Using the debugger against a local server
	Debugger extension
	Alternative debugger setup

	Running tests
	Frequently Asked Questions
	My client returns "XML-RPC Fault #2: Invalid return payload: enable debugging to examine incoming payload": what should I do?
	How can I save to a file the xml of the xml-rpc responses received from servers?
	How can I save to a file the xml of the xml-rpc requests/responses generated from the library?
	Is there any limitation on the size of the requests / responses that can be successfully sent?
	How to send custom XML as payload of a method call
	My server (client) returns an error whenever the client (server) sends accented characters
	Can I use the MS Windows character set?
	Does the library support using cookies / http sessions?
	Does the library support following http redirects?
	Does the library support setting custom cURL options?
	Does the server support cross-domain xml-rpc calls?
	How to enable long-lasting method calls
	Integration with the PHP xmlrpc extension
	Substitution of the PHP xmlrpc extension

	Appendix A: Files in the distribution
	Appendix B: Exception hierarchy

