-
Notifications
You must be signed in to change notification settings - Fork 1.8k
/
Copy pathUnitTest.ino
927 lines (823 loc) · 38.1 KB
/
UnitTest.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
/*
* UnitTest.cpp
*
* Demonstrates sending IR codes in standard format with address and command and
* simultaneously receiving. Both values are checked for consistency.
*
* This file is part of Arduino-IRremote https://github.com/Arduino-IRremote/Arduino-IRremote.
*
************************************************************************************
* MIT License
*
* Copyright (c) 2020-2025 Armin Joachimsmeyer
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is furnished
* to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
* INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
* PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
* CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE
* OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
************************************************************************************
*/
#include <Arduino.h>
#include "PinDefinitionsAndMore.h" // Define macros for input and output pin etc.
#if !defined(RAW_BUFFER_LENGTH)
// For air condition remotes it requires 600 (maximum for 2k RAM) to 750. Default is 112 if DECODE_MAGIQUEST is enabled, otherwise 100.
# if (defined(RAMEND) && RAMEND <= 0x4FF) || (defined(RAMSIZE) && RAMSIZE < 0x4FF)
#define RAW_BUFFER_LENGTH 360
# elif (defined(RAMEND) && RAMEND <= 0x8FF) || (defined(RAMSIZE) && RAMSIZE < 0x8FF)
#define RAW_BUFFER_LENGTH 400 // 400 is OK with Pronto and 1000 is OK without Pronto. 1200 is too much here, because then variables are overwritten.
# endif
#endif
//#define EXCLUDE_UNIVERSAL_PROTOCOLS // Saves up to 1000 bytes program memory.
//#define EXCLUDE_EXOTIC_PROTOCOLS // Saves around 240 bytes program memory if IrSender.write is used
//#define SEND_PWM_BY_TIMER // Disable carrier PWM generation in software and use (restricted) hardware PWM.
//#define USE_NO_SEND_PWM // Use no carrier PWM, just simulate an active low receiver signal. Overrides SEND_PWM_BY_TIMER definition
#if FLASHEND <= 0x7FFF // For 32k flash or less, like ATmega328
#define NO_LED_FEEDBACK_CODE // Saves 344 bytes program memory
#endif
// MARK_EXCESS_MICROS is subtracted from all marks and added to all spaces before decoding,
//#define USE_MSB_DECODING_FOR_DISTANCE_DECODER
// to compensate for the signal forming of different IR receiver modules. See also IRremote.hpp line 142.
//#define MARK_EXCESS_MICROS 20 // Adapt it to your IR receiver module. 40 is taken for the cheap VS1838 module her, since we have high intensity.
//#define RECORD_GAP_MICROS 12000 // Default is 8000. Activate it for some LG air conditioner protocols.
//#define TRACE // For internal usage
//#define DEBUG // Activate this for lots of lovely debug output from the decoders.
#if FLASHEND >= 0x1FFF // For 8k flash or more, like ATtiny85
#define DECODE_DENON // Includes Sharp
#define DECODE_KASEIKYO
#define DECODE_PANASONIC // alias for DECODE_KASEIKYO
#define DECODE_NEC // Includes Apple and Onkyo
#endif
#if FLASHEND >= 0x3FFF // For 16k flash or more, like ATtiny1604
#define DECODE_JVC
#define DECODE_RC5
#define DECODE_RC6
#define DECODE_DISTANCE_WIDTH // Universal decoder for pulse distance width protocols
#define DECODE_HASH // special decoder for all protocols
#endif
#if FLASHEND >= 0x7FFF // For 32k flash or more, like ATmega328
#define DECODE_SONY
#define DECODE_SAMSUNG
#define DECODE_LG
#define DECODE_BEO // It prevents decoding of SONY (default repeats), which we are not using here.
//#define ENABLE_BEO_WITHOUT_FRAME_GAP // !!!For successful unit testing we must see the warning at ir_BangOlufsen.hpp:100:2!!!
#if defined(DECODE_BEO)
#define RECORD_GAP_MICROS 16000 // Force to get the complete frame including the 3. space of 15 ms in the receive buffer
#define BEO_KHZ 38 // We send and receive Bang&Olufsen with 38 kHz here (instead of 455 kHz).
#endif
#define DECODE_BOSEWAVE
#define DECODE_MAGIQUEST
#define DECODE_FAST
//#define DECODE_WHYNTER
//#define DECODE_LEGO_PF
#endif
//#undef IR_SEND_PIN // enable this, if you need to set send pin programmatically using uint8_t tSendPin below
#include <IRremote.hpp>
#if defined(APPLICATION_PIN)
#define DEBUG_BUTTON_PIN APPLICATION_PIN // if held low, print timing for each received data
#else
#define DEBUG_BUTTON_PIN 6
#endif
#define DELAY_AFTER_SEND 1000
#define DELAY_AFTER_LOOP 5000
#if defined(SEND_PWM_BY_TIMER) && !defined(SEND_PWM_DOES_NOT_USE_RECEIVE_TIMER)
#error Unit test cannot run if SEND_PWM_BY_TIMER is enabled i.e. receive timer us also used by send
#endif
/*
* For callback
*/
volatile bool sDataJustReceived = false;
void ReceiveCompleteCallbackHandler();
#if __INT_WIDTH__ < 32
IRRawDataType const tRawDataPGM[4] PROGMEM = { 0xB02002, 0xA010, 0x0, 0x0 }; // LSB of tRawData[0] is sent first
#endif
void setup() {
pinMode(DEBUG_BUTTON_PIN, INPUT_PULLUP);
Serial.begin(115200);
#if defined(__AVR_ATmega32U4__) || defined(SERIAL_PORT_USBVIRTUAL) || defined(SERIAL_USB) /*stm32duino*/|| defined(USBCON) /*STM32_stm32*/ \
|| defined(SERIALUSB_PID) || defined(ARDUINO_ARCH_RP2040) || defined(ARDUINO_attiny3217)
// Wait until Serial Monitor is attached.
// Required for boards using USB code for Serial like Leonardo.
// Is void for USB Serial implementations using external chips e.g. a CH340.
while (!Serial)
;
// !!! Program will not proceed if no Serial Monitor is attached !!!
#endif
// Just to know which program is running on my Arduino
Serial.println(F("START " __FILE__ " from " __DATE__ "\r\nUsing library version " VERSION_IRREMOTE));
// Start the receiver and if not 3. parameter specified, take LED_BUILTIN pin from the internal boards definition as default feedback LED
IrReceiver.begin(IR_RECEIVE_PIN, ENABLE_LED_FEEDBACK);
IrReceiver.registerReceiveCompleteCallback(ReceiveCompleteCallbackHandler);
Serial.print(F("Ready to receive IR signals of protocols: "));
printActiveIRProtocols(&Serial);
#if defined(IR_RECEIVE_PIN_STRING)
Serial.println(F("at pin " IR_RECEIVE_PIN_STRING));
#else
Serial.println(F("at pin " STR(IR_RECEIVE_PIN)));
#endif
#if defined(LED_BUILTIN) && !defined(NO_LED_FEEDBACK_CODE)
# if defined(FEEDBACK_LED_IS_ACTIVE_LOW)
Serial.print(F("Active low "));
# endif
Serial.print(F("FeedbackLED at pin "));
Serial.println(LED_BUILTIN); // Works also for ESP32: static const uint8_t LED_BUILTIN = 8; #define LED_BUILTIN LED_BUILTIN
#endif
Serial.println(F("Use ReceiveCompleteCallback"));
Serial.println(F("Receive buffer length is " STR(RAW_BUFFER_LENGTH)));
#if defined(IR_SEND_PIN)
IrSender.begin(); // Start with IR_SEND_PIN -which is defined in PinDefinitionsAndMore.h- as send pin and enable feedback LED at default feedback LED pin
# if defined(IR_SEND_PIN_STRING)
Serial.println(F("Send IR signals at pin " IR_SEND_PIN_STRING));
# else
Serial.println(F("Send IR signals at pin " STR(IR_SEND_PIN)));
# endif
#else
// Here the macro IR_SEND_PIN is not defined or undefined above with #undef IR_SEND_PIN
uint8_t tSendPin = 3;
IrSender.begin(tSendPin, ENABLE_LED_FEEDBACK, USE_DEFAULT_FEEDBACK_LED_PIN);// Specify send pin and enable feedback LED at default feedback LED pin
// You can change send pin later with IrSender.setSendPin();
Serial.print(F("Send IR signals at pin "));
Serial.println(tSendPin);
#endif
#if FLASHEND >= 0x3FFF // For 16k flash or more, like ATtiny1604
Serial.print(F("If you connect debug pin "));
# if defined(APPLICATION_PIN_STRING)
Serial.print(APPLICATION_PIN_STRING);
# else
Serial.print(DEBUG_BUTTON_PIN);
# endif
Serial.println(F(" to ground, raw data is always printed"));
// For esp32 we use PWM generation by ledcWrite() for each pin.
# if !defined(SEND_PWM_BY_TIMER)
/*
* Print internal software PWM generation info
*/
IrSender.enableIROut(38); // Call it with 38 kHz to initialize the values printed below
Serial.print(F("Send signal mark duration for 38kHz is "));
Serial.print(IrSender.periodOnTimeMicros);
Serial.print(F(" us, pulse narrowing correction is "));
Serial.print(IrSender.getPulseCorrectionNanos());
Serial.print(F(" ns, total period is "));
Serial.print(IrSender.periodTimeMicros);
Serial.println(F(" us"));
# endif
// infos for receive
Serial.print(RECORD_GAP_MICROS);
Serial.println(F(" us is the (minimum) gap, after which the start of a new IR packet is assumed"));
Serial.print(MARK_EXCESS_MICROS);
Serial.println(F(" us are subtracted from all marks and added to all spaces for decoding"));
#endif
delay(DELAY_AFTER_SEND);
}
void checkReceivedRawData(IRRawDataType aRawData) {
// wait until signal has received
while (!sDataJustReceived) {
};
sDataJustReceived = false;
if (IrReceiver.decode()) {
// Print a short summary of received data
#if FLASHEND >= 0x3FFF // For 16k flash or more, like ATtiny1604
IrReceiver.printIRResultShort(&Serial);
IrReceiver.printIRSendUsage(&Serial);
#else
IrReceiver.printIRResultMinimal(&Serial);
#endif
#if FLASHEND >= 0x3FFF // For 16k flash or more, like ATtiny1604
if (IrReceiver.decodedIRData.protocol == UNKNOWN || digitalRead(DEBUG_BUTTON_PIN) == LOW) {
// We have an unknown protocol, print more info
IrReceiver.printIRResultRawFormatted(&Serial, true);
}
#endif
if (IrReceiver.decodedIRData.protocol == PULSE_DISTANCE || IrReceiver.decodedIRData.protocol == PULSE_WIDTH) {
if (IrReceiver.decodedIRData.decodedRawData != aRawData) {
Serial.print(F("ERROR: Received data=0x"));
#if (__INT_WIDTH__ < 32)
Serial.print(IrReceiver.decodedIRData.decodedRawData, HEX);
#else
PrintULL::print(&Serial, IrReceiver.decodedIRData.decodedRawData, HEX);
#endif
Serial.print(F(" != sent data=0x"));
#if (__INT_WIDTH__ < 32)
Serial.print(aRawData, HEX);
#else
PrintULL::print(&Serial, aRawData, HEX);
#endif
Serial.println();
}
}
IrReceiver.resume();
} else {
Serial.println(F("No data received"));
}
Serial.println();
}
#if defined(DECODE_DISTANCE_WIDTH)
void checkReceivedArray(IRRawDataType *aRawDataArrayPointer, uint8_t aArraySize) {
// wait until signal has received
while (!sDataJustReceived) {
};
sDataJustReceived = false;
if (IrReceiver.decode()) {
// Print a short summary of received data
#if FLASHEND >= 0x3FFF // For 16k flash or more, like ATtiny1604
IrReceiver.printIRResultShort(&Serial);
IrReceiver.printIRSendUsage(&Serial);
#else
IrReceiver.printIRResultMinimal(&Serial);
#endif
#if FLASHEND >= 0x3FFF // For 16k flash or more, like ATtiny1604
if (IrReceiver.decodedIRData.protocol == UNKNOWN || digitalRead(DEBUG_BUTTON_PIN) == LOW) {
// We have an unknown protocol, print more info
IrReceiver.printIRResultRawFormatted(&Serial, true);
}
#endif
if (IrReceiver.decodedIRData.protocol == PULSE_DISTANCE || IrReceiver.decodedIRData.protocol == PULSE_WIDTH) {
for (uint_fast8_t i = 0; i < aArraySize; ++i) {
if (IrReceiver.decodedIRData.decodedRawDataArray[i] != *aRawDataArrayPointer) {
Serial.print(F("ERROR: Received data=0x"));
# if (__INT_WIDTH__ < 32)
Serial.print(IrReceiver.decodedIRData.decodedRawDataArray[i], HEX);
# else
PrintULL::print(&Serial, IrReceiver.decodedIRData.decodedRawDataArray[i], HEX);
# endif
Serial.print(F(" != sent data=0x"));
Serial.println(*aRawDataArrayPointer, HEX);
}
aRawDataArrayPointer++;
}
}
IrReceiver.resume();
} else {
Serial.println(F("No data received"));
}
Serial.println();
}
#endif
/*
* Test callback function
* Has the same functionality as a check with available()
*/
void ReceiveCompleteCallbackHandler() {
sDataJustReceived = true;
}
void checkReceive(uint16_t aSentAddress, uint16_t aSentCommand) {
// wait until signal has received
uint16_t tTimeoutCounter = 1000; // gives 10 seconds timeout
while (!sDataJustReceived) {
delay(10);
if (tTimeoutCounter == 0) {
Serial.println(F("Receive timeout happened"));
break;
}
tTimeoutCounter--;
}
sDataJustReceived = false;
if (IrReceiver.decode()) {
// Print a short summary of received data
#if FLASHEND >= 0x3FFF // For 16k flash or more, like ATtiny1604
IrReceiver.printIRResultShort(&Serial);
IrReceiver.printIRSendUsage(&Serial);
#else
IrReceiver.printIRResultMinimal(&Serial);
#endif
if (IrReceiver.decodedIRData.flags & IRDATA_FLAGS_WAS_OVERFLOW) {
Serial.println(F("Try to increase the \"RAW_BUFFER_LENGTH\" value of " STR(RAW_BUFFER_LENGTH) " in " __FILE__));
// see also https://github.com/Arduino-IRremote/Arduino-IRremote#compile-options--macros-for-this-library
}
#if FLASHEND >= 0x3FFF // For 16k flash or more, like ATtiny1604
if (IrReceiver.decodedIRData.protocol == UNKNOWN || digitalRead(DEBUG_BUTTON_PIN) == LOW) {
// We have an unknown protocol, print more info
IrReceiver.printIRResultRawFormatted(&Serial, true);
}
#endif
IrReceiver.resume(); // Early resume
if (IrReceiver.decodedIRData.protocol == UNKNOWN) {
Serial.println(F("ERROR: Unknown protocol"));
} else {
/*
* Check address
*/
if (IrReceiver.decodedIRData.address != aSentAddress) {
Serial.print(F("ERROR: Received address=0x"));
Serial.print(IrReceiver.decodedIRData.address, HEX);
Serial.print(F(" != sent address=0x"));
Serial.println(aSentAddress, HEX);
}
/*
* Check command
*/
if (IrReceiver.decodedIRData.command != aSentCommand) {
Serial.print(F("ERROR: Received command=0x"));
Serial.print(IrReceiver.decodedIRData.command, HEX);
Serial.print(F(" != sent command=0x"));
Serial.println(aSentCommand, HEX);
}
}
} else {
Serial.println(F("No data received"));
IrReceiver.resume();
}
Serial.println();
}
/*
* Set up the data to be sent.
* For most protocols, the data is build up with a constant 8 (or 16 byte) address
* and a variable 8 bit command.
* There are exceptions like Sony and Denon, which have 5 bit address.
*/
uint16_t sAddress = 0xFFF1;
uint8_t sCommand = 0x76;
uint16_t s16BitCommand = 0x9876;
uint8_t sRepeats = 0;
void loop() {
/*
* Print values
*/
Serial.println();
Serial.print(F("address=0x"));
Serial.print(sAddress, HEX);
Serial.print(F(" command=0x"));
Serial.print(sCommand, HEX);
Serial.println();
Serial.println();
Serial.print(F("Send NEC with 8 bit address"));
if (sRepeats > 0) {
Serial.print(F(" and complete NEC frames as repeats to force decoding as NEC2"));
}
Serial.println();
Serial.flush();
IrSender.sendNEC(sAddress & 0xFF, sCommand, 0);
checkReceive(sAddress & 0xFF, sCommand);
/*
* Complete NEC frames as repeats to force decoding as NEC2 are tested here
*/
for (int8_t i = 0; i < sRepeats; i++) {
if (digitalRead(DEBUG_BUTTON_PIN) != LOW) {
// If debug is enabled, printing time (50 ms) is sufficient as delay
delayMicroseconds(NEC_REPEAT_DISTANCE - 20000); // 20000 is just a guess
}
IrSender.sendNEC(sAddress & 0xFF, sCommand, 0);
checkReceive(sAddress & 0xFF, sCommand);
}
delay(DELAY_AFTER_SEND); // delay must be greater than 5 ms (RECORD_GAP_MICROS), otherwise the receiver sees it as one long signal
Serial.println(F("Send NEC with 16 bit address"));
Serial.flush();
IrSender.sendNEC(sAddress, sCommand, 0);
checkReceive(sAddress, sCommand);
delay(DELAY_AFTER_SEND);
Serial.println(F("Send NEC2 with 16 bit address"));
Serial.flush();
IrSender.sendNEC2(sAddress, sCommand, 0);
checkReceive(sAddress, sCommand);
delay(DELAY_AFTER_SEND);
#if FLASHEND >= 0x3FFF // For 16k flash or more, like ATtiny1604. Code does not fit in program memory of ATtiny85 etc.
if (sAddress == 0xFFF1) {
# if FLASHEND >= 0x7FFF && ((!defined(RAMEND) && !defined(RAMSIZE)) || (defined(RAMEND) && RAMEND > 0x6FF) || (defined(RAMSIZE) && RAMSIZE > 0x6FF)) // For 32k flash or more, like Uno. Code does not fit in program memory of ATtiny1604 etc.
IRRawDataType tRawData[4];
/*
* Send constant values only once in this demo
*/
Serial.println(F("Send NEC Pronto data with 8 bit address 0x80 and command 0x45 and no repeats"));
Serial.flush();
// This is copied to stack/ram internally
IrSender.sendPronto(F("0000 006D 0022 0000 015E 00AB " /* Pronto header + start bit */
"0017 0015 0017 0015 0017 0017 0015 0017 0017 0015 0017 0015 0017 0015 0017 003F " /* Lower address byte */
"0017 003F 0017 003E 0017 003F 0015 003F 0017 003E 0017 003F 0017 003E 0017 0015 " /* Upper address byte (inverted at 8 bit mode) */
"0017 003E 0017 0015 0017 003F 0017 0015 0017 0015 0017 0015 0017 003F 0017 0015 " /* command byte */
"0019 0013 0019 003C 0017 0015 0017 003F 0017 003E 0017 003F 0017 0015 0017 003E " /* inverted command byte */
"0017 0806"), 0); //stop bit, no repeat possible, because of missing repeat pattern
checkReceive(0x80, 0x45);
delay(DELAY_AFTER_SEND);
Serial.println(
F("Send NEC sendRaw data with 8 bit address=0xFB04 and command 0x08 and exact timing (16 bit array format)"));
Serial.flush();
const uint16_t irSignal[] = { 9000, 4500/*Start bit*/, 560, 560, 560, 560, 560, 1690, 560,
560/*0010 0x4 of 16 bit address LSB first*/, 560, 560, 560, 560, 560, 560, 560, 560/*0000*/, 560, 1690, 560, 1690,
560, 560, 560, 1690/*1101 0xB*/, 560, 1690, 560, 1690, 560, 1690, 560, 1690/*1111*/, 560, 560, 560, 560, 560, 560,
560, 1690/*0001 0x08 of command LSB first*/, 560, 560, 560, 560, 560, 560, 560, 560/*0000 0x00*/, 560, 1690, 560,
1690, 560, 1690, 560, 560/*1110 Inverted 8 of command*/, 560, 1690, 560, 1690, 560, 1690, 560,
1690/*1111 inverted 0 of command*/, 560 /*stop bit*/}; // Using exact NEC timing
IrSender.sendRaw(irSignal, sizeof(irSignal) / sizeof(irSignal[0]), NEC_KHZ); // Note the approach used to automatically calculate the size of the array.
checkReceive(0xFB04 & 0xFF, 0x08);
delay(DELAY_AFTER_SEND);
/*
* With sendNECRaw() you can send 32 bit codes directly, i.e. without parity etc.
*/
Serial.println(F("Send ONKYO with 16 bit address 0x0102 and 16 bit command 0x0304 with NECRaw(0x03040102)"));
Serial.flush();
IrSender.sendNECRaw(0x03040102, 0);
checkReceive(0x0102, 0x304);
delay(DELAY_AFTER_SEND);
/*
* With Send sendNECMSB() you can send your old 32 bit codes.
* To convert one into the other, you must reverse the byte positions and then reverse all positions of each byte.
* Use bitreverse32Bit().
* Example:
* 0xCB340102 byte reverse -> 0x020134CB bit reverse-> 40802CD3
*/
Serial.println(F("Send ONKYO with 16 bit address 0x0102 and command 0x34 with old 32 bit format MSB first (0x40802CD3)"));
Serial.flush();
IrSender.sendNECMSB(0x40802CD3, 32, false);
checkReceive(0x0102, 0x34);
delay(DELAY_AFTER_SEND);
# if defined(DECODE_PANASONIC) || defined(DECODE_KASEIKYO)
Serial.println(F("Send Panasonic 0xB, 0x10 as 48 bit PulseDistance using ProtocolConstants"));
Serial.flush();
# if __INT_WIDTH__ < 32
IrSender.sendPulseDistanceWidthFromPGMArray_P(&KaseikyoProtocolConstants, &tRawDataPGM[0], 48, NO_REPEATS); // Panasonic is a Kaseikyo variant
checkReceive(0x0B, 0x10);
# else
IrSender.sendPulseDistanceWidth_P(&KaseikyoProtocolConstants, 0xA010B02002, 48, NO_REPEATS); // Panasonic is a Kaseikyo variant
checkReceivedRawData(0xA010B02002);
# endif
delay(DELAY_AFTER_SEND);
/*
* Send 2 Panasonic 48 bit codes as Pulse Distance data, once with LSB and once with MSB first
*/
Serial.println(F("Send Panasonic 0xB, 0x10 as 48 bit PulseDistance"));
Serial.println(F("-LSB first"));
Serial.flush();
# if __INT_WIDTH__ < 32
IrSender.sendPulseDistanceWidthFromPGMArray(38, 3450, 1700, 450, 1250, 450, 400, &tRawDataPGM[0], 48, PROTOCOL_IS_LSB_FIRST,
0, NO_REPEATS);
checkReceive(0x0B, 0x10);
# else
IrSender.sendPulseDistanceWidth(38, 3450, 1700, 450, 1250, 450, 400, 0xA010B02002, 48, PROTOCOL_IS_LSB_FIRST, 0,
NO_REPEATS);
checkReceivedRawData(0xA010B02002);
# endif
delay(DELAY_AFTER_SEND);
// The same with MSB first. Use bit reversed raw data of LSB first part
Serial.println(F("-MSB first"));
# if __INT_WIDTH__ < 32
tRawData[0] = 0x40040D00; // MSB of tRawData[0] is sent first
tRawData[1] = 0x805;
IrSender.sendPulseDistanceWidthFromArray(38, 3450, 1700, 450, 1250, 450, 400, &tRawData[0], 48, PROTOCOL_IS_MSB_FIRST, 0,
NO_REPEATS);
checkReceive(0x0B, 0x10);
# else
IrSender.sendPulseDistanceWidth(38, 3450, 1700, 450, 1250, 450, 400, 0x40040D000805, 48, PROTOCOL_IS_MSB_FIRST, 0,
NO_REPEATS);
checkReceivedRawData(0x40040D000805);
# endif
delay(DELAY_AFTER_SEND);
# endif // defined(DECODE_PANASONIC) || defined(DECODE_KASEIKYO)
# if defined(DECODE_DISTANCE_WIDTH)
# if defined(USE_MSB_DECODING_FOR_DISTANCE_DECODER)
Serial.println(F("Send 52 bit PulseDistance 0x43D8613C and 0x3BC3B MSB first"));
Serial.flush();
# if __INT_WIDTH__ < 32
tRawData[0] = 0x43D8613C; // MSB of tRawData[0] is sent first
tRawData[1] = 0x3BC3B;
IrSender.sendPulseDistanceWidthFromArray(38, 8900, 4450, 550, 1700, 550, 600, &tRawData[0], 52, PROTOCOL_IS_MSB_FIRST, 0,
NO_REPEATS);
checkReceivedArray(tRawData, 2);
# else
IrSender.sendPulseDistanceWidth(38, 8900, 4450, 550, 1700, 550, 600, 0x43D8613CBC3B, 52, PROTOCOL_IS_MSB_FIRST, 0, NO_REPEATS);
checkReceivedRawData(0x43D8613CBC3B);
# endif
delay(DELAY_AFTER_SEND);
Serial.println(F("Send 52 bit PulseDistanceWidth 0x43D8613C and 0x3BC3B MSB first"));
Serial.flush();
// Real PulseDistanceWidth (constant bit length) does not require a stop bit
# if __INT_WIDTH__ < 32
IrSender.sendPulseDistanceWidthFromArray(38, 300, 600, 600, 300, 300, 600, &tRawData[0], 52, PROTOCOL_IS_MSB_FIRST, 0, 0);
checkReceivedArray(tRawData, 2);
# else
IrSender.sendPulseDistanceWidth(38, 300, 600, 600, 300, 300, 600, 0x123456789ABC, 52, PROTOCOL_IS_MSB_FIRST, 0, 0);
checkReceivedRawData(0x123456789ABC);
# endif
delay(DELAY_AFTER_SEND);
Serial.println(F("Send 32 bit PulseWidth 0x43D8613C MSB first"));
Serial.flush();
// Real PulseDistanceWidth (constant bit length) does not require a stop bit
IrSender.sendPulseDistanceWidth(38, 1000, 500, 600, 300, 300, 300, 0x43D8613C, 32, PROTOCOL_IS_MSB_FIRST, 0, 0);
checkReceivedRawData(0x43D8613C);
delay(DELAY_AFTER_SEND);
# else // defined(USE_MSB_DECODING_FOR_DISTANCE_DECODER)
Serial.println(F("Send 72 bit PulseDistance 0x5A AFEDCBA9 87654321 LSB first"));
Serial.flush();
# if __INT_WIDTH__ < 32
tRawData[0] = 0x87654321; // LSB of tRawData[0] is sent first
tRawData[1] = 0xAFEDCBA9;
tRawData[2] = 0x5A;
IrSender.sendPulseDistanceWidthFromArray(38, 8900, 4450, 550, 1700, 550, 600, &tRawData[0], 72, PROTOCOL_IS_LSB_FIRST, 0,
NO_REPEATS);
checkReceivedArray(tRawData, 3);
# else
tRawData[0] = 0xAFEDCBA987654321;
tRawData[1] = 0x5A; // LSB of tRawData[0] is sent first
IrSender.sendPulseDistanceWidthFromArray(38, 8900, 4450, 550, 1700, 550, 600, &tRawData[0], 72, PROTOCOL_IS_LSB_FIRST, 0,
NO_REPEATS);
checkReceivedArray(tRawData, 2);
# endif
delay(DELAY_AFTER_SEND);
Serial.println(F("Send 52 bit PulseDistanceWidth 0xDCBA9 87654321 LSB first"));
Serial.flush();
// Real PulseDistanceWidth (constant bit length) does theoretically not require a stop bit, but we know the stop bit from serial transmission
# if __INT_WIDTH__ < 32
tRawData[1] = 0xDCBA9;
IrSender.sendPulseDistanceWidthFromArray(38, 300, 600, 300, 600, 600, 300, &tRawData[0], 52, PROTOCOL_IS_LSB_FIRST, 0, 0);
checkReceivedArray(tRawData, 2);
# else
IrSender.sendPulseDistanceWidth(38, 300, 600, 300, 600, 600, 300, 0xDCBA987654321, 52, PROTOCOL_IS_LSB_FIRST, 0, 0);
checkReceivedRawData(0xDCBA987654321);
# endif
delay(DELAY_AFTER_SEND);
Serial.println(F("Send 52 bit PulseDistanceWidth 0xDCBA9 87654321 LSB first with inverse timing and data"));
Serial.flush();
# if __INT_WIDTH__ < 32
tRawData[2] = ~tRawData[0];
tRawData[3] = ~tRawData[1];
IrSender.sendPulseDistanceWidthFromArray(38, 300, 600, 600, 300, 300, 600, &tRawData[2], 52, PROTOCOL_IS_LSB_FIRST, 0, 0);
checkReceivedArray(tRawData, 2);
# else
IrSender.sendPulseDistanceWidth(38, 300, 600, 600, 300, 300, 600, ~0xDCBA987654321, 52, PROTOCOL_IS_LSB_FIRST, 0, 0);
checkReceivedRawData(0xDCBA987654321);
# endif
delay(DELAY_AFTER_SEND);
Serial.println(F("Send 7 bit ASCII character with PulseDistanceWidth LSB first"));
Serial.flush();
// Real PulseDistanceWidth (constant bit length) does theoretically not require a stop bit, but we know the stop bit from serial transmission
IrSender.sendPulseDistanceWidth(38, 6000, 500, 500, 1500, 1500, 500, sCommand, 7, PROTOCOL_IS_LSB_FIRST, 0, 0);
checkReceivedRawData(sCommand);
delay(DELAY_AFTER_SEND);
Serial.println(F("Send Sony12 as PulseWidth LSB first"));
Serial.flush();
uint32_t tData = (uint32_t) sAddress << 7 | (sCommand & 0x7F);
IrSender.sendPulseDistanceWidth(38, 2400, 600, 1200, 600, 600, 600, tData, SIRCS_12_PROTOCOL, PROTOCOL_IS_LSB_FIRST, 0, 0);
checkReceive(sAddress & 0x1F, sCommand & 0x7F);
delay(DELAY_AFTER_SEND);
Serial.println(F("Send 32 bit PulseWidth 0x87654321 LSB first"));
Serial.flush();
IrSender.sendPulseDistanceWidth(38, 1000, 500, 600, 300, 300, 300, 0x87654321, 32, PROTOCOL_IS_LSB_FIRST, 0, 0);
checkReceivedRawData(0x87654321);
delay(DELAY_AFTER_SEND);
# endif // defined(USE_MSB_DECODING_FOR_DISTANCE_DECODER)
# endif // defined(DECODE_DISTANCE_WIDTH)
# endif // if FLASHEND >= 0x7FFF ...
# if defined(DECODE_MAGIQUEST)
Serial.println(F("Send MagiQuest 0x6BCDFF00, 0x176 as 55 bit PulseDistanceWidth MSB first"));
Serial.flush();
# if __INT_WIDTH__ < 32
IRRawDataType tRawData1[2];
tRawData1[0] = 0x01AF37FC; // We have 1 header (start) bit and 7 start bits and 31 address bits for MagiQuest, so 0x6BCDFF00 is shifted 2 left
tRawData1[1] = 0x017619; // We send only 23 bits here! 0x19 is the checksum
IrSender.sendPulseDistanceWidthFromArray(38, 287, 864, 576, 576, 287, 864, &tRawData1[0], 55,
PROTOCOL_IS_MSB_FIRST | SUPPRESS_STOP_BIT, 0, 0);
# else
// 0xD79BFE00 is 0x6BCDFF00 is shifted 1 left
IrSender.sendPulseDistanceWidth(38, 287, 864, 576, 576, 287, 864, 0xD79BFE017619, 55, PROTOCOL_IS_MSB_FIRST, 0, 0);
# endif
checkReceive(0xFF00, 0x176);
if (IrReceiver.decodedIRData.decodedRawData != 0x6BCDFF00) {
Serial.print(F("ERROR: Received address=0x"));
#if (__INT_WIDTH__ < 32)
Serial.print(IrReceiver.decodedIRData.decodedRawData, HEX);
#else
PrintULL::print(&Serial, IrReceiver.decodedIRData.decodedRawData, HEX);
#endif
Serial.println(F(" != sent address=0x6BCDFF00"));
Serial.println();
}
delay(DELAY_AFTER_SEND);
# endif // defined(DECODE_MAGIQUEST)
}
#endif // if FLASHEND >= 0x3FFF
Serial.println(F("Send Onkyo (NEC with 16 bit command)"));
Serial.flush();
IrSender.sendOnkyo(sAddress, (sCommand + 1) << 8 | sCommand, 0);
checkReceive(sAddress, (sCommand + 1) << 8 | sCommand);
delay(DELAY_AFTER_SEND);
Serial.println(F("Send Apple"));
Serial.flush();
IrSender.sendApple(sAddress & 0xFF, sCommand, 0);
checkReceive(sAddress & 0xFF, sCommand);
delay(DELAY_AFTER_SEND);
#if defined(DECODE_PANASONIC) || defined(DECODE_KASEIKYO)
Serial.println(F("Send Panasonic"));
Serial.flush();
IrSender.sendPanasonic(sAddress & 0xFFF, sCommand, 0);
checkReceive(sAddress & 0xFFF, sCommand);
delay(DELAY_AFTER_SEND);
Serial.println(F("Send Kaseikyo with 0x4711 as Vendor ID"));
Serial.flush();
IrSender.sendKaseikyo(sAddress & 0xFFF, sCommand, 0, 0x4711);
checkReceive(sAddress & 0xFFF, sCommand);
delay(DELAY_AFTER_SEND);
Serial.println(F("Send Kaseikyo_Denon variant"));
Serial.flush();
IrSender.sendKaseikyo_Denon(sAddress & 0xFFF, sCommand, 0);
checkReceive(sAddress & 0xFFF, sCommand);
delay(DELAY_AFTER_SEND);
#endif
#if defined(DECODE_DENON)
Serial.println(F("Send Denon"));
Serial.flush();
IrSender.sendDenon(sAddress & 0x1F, sCommand, 0);
checkReceive(sAddress & 0x1F, sCommand);
delay(DELAY_AFTER_SEND);
Serial.println(F("Send Denon/Sharp variant"));
Serial.flush();
IrSender.sendSharp(sAddress & 0x1F, sCommand, 0);
checkReceive(sAddress & 0x1F, sCommand);
delay(DELAY_AFTER_SEND);
#endif
#if defined(DECODE_SONY)
Serial.println(F("Send Sony/SIRCS with 7 command and 5 address bits"));
Serial.flush();
IrSender.sendSony(sAddress & 0x1F, sCommand, 0); // SIRCS_12_PROTOCOL is default
checkReceive(sAddress & 0x1F, sCommand & 0x7F);
delay(DELAY_AFTER_SEND);
Serial.println(F("Send Sony/SIRCS with 7 command and 8 address bits"));
Serial.flush();
IrSender.sendSony(sAddress & 0xFF, sCommand, 0, SIRCS_15_PROTOCOL);
checkReceive(sAddress & 0xFF, sCommand & 0x7F);
delay(DELAY_AFTER_SEND);
Serial.println(F("Send Sony/SIRCS with 7 command and 13 address bits"));
Serial.flush();
IrSender.sendSony(sAddress & 0x1FFF, sCommand, 0, SIRCS_20_PROTOCOL);
checkReceive(sAddress & 0x1FFF, sCommand & 0x7F);
delay(DELAY_AFTER_SEND);
#endif
#if defined(DECODE_SAMSUNG)
Serial.println(F("Send Samsung 8 bit command and 8 bit address"));
Serial.flush();
IrSender.sendSamsung(sAddress & 0xFF, sCommand, 0);
checkReceive(sAddress & 0xFF, sCommand);
delay(DELAY_AFTER_SEND);
Serial.println(F("Send Samsung 16 bit command and address"));
Serial.flush();
IrSender.sendSamsung16BitAddressAndCommand(sAddress, s16BitCommand, 0);
checkReceive(sAddress, s16BitCommand);
delay(DELAY_AFTER_SEND);
Serial.println(F("Send Samsung48 16 bit command"));
Serial.flush();
IrSender.sendSamsung48(sAddress, s16BitCommand, 0);
checkReceive(sAddress, s16BitCommand);
delay(DELAY_AFTER_SEND);
#endif
#if defined(DECODE_RC5)
Serial.println(F("Send RC5"));
Serial.flush();
IrSender.sendRC5(sAddress & 0x1F, sCommand & 0x3F, 0, true); // 5 address, 6 command bits
checkReceive(sAddress & 0x1F, sCommand & 0x3F);
delay(DELAY_AFTER_SEND);
Serial.println(F("Send RC5X with 7.th MSB of command set"));
Serial.flush();
IrSender.sendRC5(sAddress & 0x1F, (sCommand & 0x3F) + 0x40, 0, true); // 5 address, 7 command bits
checkReceive(sAddress & 0x1F, (sCommand & 0x3F) + 0x40);
delay(DELAY_AFTER_SEND);
#endif
#if defined(DECODE_RC6)
Serial.println(F("Send RC6"));
Serial.flush();
sLastSendToggleValue = sAddress & 0x01; // to modify toggling at each loop
IrSender.sendRC6(sAddress & 0xFF, sCommand, 0, true);
checkReceive(sAddress & 0xFF, sCommand);
delay(DELAY_AFTER_SEND);
Serial.println(F("Send RC6A with 14 bit 0x2711 as extra"));
Serial.flush();
IrSender.sendRC6A(sAddress & 0xFF, sCommand, 0, 0x2711, true);
checkReceive(sAddress & 0xFF, sCommand);
delay(DELAY_AFTER_SEND);
#endif
#if defined(DECODE_BEO)
Serial.println(F("Send Bang&Olufsen"));
Serial.flush();
IrSender.sendBangOlufsen(sAddress & 0x0FF, sCommand, 0);
# if defined(ENABLE_BEO_WITHOUT_FRAME_GAP)
delay((RECORD_GAP_MICROS / 1000) + 1);
Serial.println(F("- ENABLE_BEO_WITHOUT_FRAME_GAP is enabled"));
Serial.println(F("- Now print raw data and try to decode the first 6 entries, which results in rawData 0x0"));
IrReceiver.printIRResultRawFormatted(&Serial, true);
uint8_t tOriginalRawlen = IrReceiver.decodedIRData.rawDataPtr->rawlen;
IrReceiver.decodedIRData.rawDataPtr->rawlen = 6;
/*
* decode first part / AGC part of frame
*/
IrReceiver.decode(); // sets IrReceiver.decodedIRData.rawlen to 6
IrReceiver.printIRResultShort(&Serial); // -> Protocol=Bang&Olufsen Address=0x0 Command=0x0 Raw-Data=0x0 0 bits MSB first
// Remove trailing 6 entries for second decode try
Serial.println();
Serial.println(
F(
"- Remove trailing 6 entries, which is equivalent to define RECORD_GAP_MICROS < 15000, to enable successful B&O decode"));
IrReceiver.decodedIRData.rawlen = tOriginalRawlen - 6;
IrReceiver.decodedIRData.rawDataPtr->rawlen = tOriginalRawlen - 6;
for (uint_fast8_t i = 0; i < IrReceiver.decodedIRData.rawlen; ++i) {
IrReceiver.decodedIRData.rawDataPtr->rawbuf[i] = IrReceiver.decodedIRData.rawDataPtr->rawbuf[i + 6];
}
# endif
checkReceive(sAddress & 0x0FF, sCommand);
delay(DELAY_AFTER_SEND);
#endif
#if defined(DECODE_MAGIQUEST)
Serial.println(F("Send MagiQuest"));
Serial.flush();
IrSender.sendMagiQuest(0x6BCD0000 | (uint32_t) sAddress, s16BitCommand); // we have 31 bit address
checkReceive(sAddress, s16BitCommand & 0x1FF); // we have 9 bit command
delay(DELAY_AFTER_SEND);
#endif
/*
* Next example how to use the IrSender.write function
*/
IRData IRSendData;
// prepare data
IRSendData.address = sAddress;
IRSendData.command = sCommand;
IRSendData.flags = IRDATA_FLAGS_EMPTY;
Serial.println(F("Send next protocols with IrSender.write"));
Serial.println();
Serial.flush();
#if defined(DECODE_JVC)
IRSendData.protocol = JVC; // switch protocol
Serial.print(F("Send "));
Serial.println(getProtocolString(IRSendData.protocol));
Serial.flush();
IrSender.write(&IRSendData, 0);
checkReceive(IRSendData.address & 0xFF, IRSendData.command);
delay(DELAY_AFTER_SEND);
#endif
#if defined(DECODE_LG) || defined(DECODE_MAGIQUEST)
IRSendData.command = s16BitCommand; // LG support more than 8 bit command
#endif
#if defined(DECODE_LG)
IRSendData.protocol = LG;
Serial.print(F("Send "));
Serial.println(getProtocolString(IRSendData.protocol));
Serial.flush();
IrSender.write(&IRSendData, 0);
checkReceive(IRSendData.address & 0xFF, IRSendData.command);
delay(DELAY_AFTER_SEND);
#endif
#if defined(DECODE_BOSEWAVE)
IRSendData.protocol = BOSEWAVE;
Serial.println(F("Send Bosewave with no address and 8 command bits"));
Serial.flush();
IrSender.write(&IRSendData, 0);
checkReceive(0, IRSendData.command & 0xFF);
delay(DELAY_AFTER_SEND);
#endif
#if defined(DECODE_FAST)
IRSendData.protocol = FAST;
Serial.print(F("Send "));
Serial.println(getProtocolString(IRSendData.protocol));
Serial.flush();
IrSender.write(&IRSendData, 0);
checkReceive(0, IRSendData.command & 0xFF);
delay(DELAY_AFTER_SEND);
#endif
/*
* LEGO is skipped, since it is difficult to receive because of its short marks and spaces
*/
// Serial.println(F("Send Lego with 2 channel and with 4 command bits"));
// Serial.flush();
// IrSender.sendLegoPowerFunctions(sAddress, sCommand, LEGO_MODE_COMBO, true);
// checkReceive(sAddress, sCommand); // never has success for Lego protocol :-(
// delay(DELAY_AFTER_SEND);
/*
* Force buffer overflow
*/
Serial.println(F("Force buffer overflow by sending 450 marks and spaces"));
for (unsigned int i = 0; i < 225; ++i) { // 225 because we send 2 entries per loop
// 210 + 540 = 750 should be received as 5/10 or 4/11 if compensation by MARK_EXCESS_MICROS is optimal.
// 400 + 400 should be received as 8/8 and sometimes as 9/7 or 7/9 if compensation by MARK_EXCESS_MICROS is optimal.
IrSender.mark(210); // 8 pulses at 38 kHz
IrSender.space(540); // to fill up to 750 us
}
checkReceive(sAddress, sCommand);
delay(DELAY_AFTER_SEND);
/*
* Increment values
* Also increment address just for demonstration, which normally makes no sense
*/
sAddress += 0x0101;
sCommand += 0x11;
s16BitCommand += 0x1111;
sRepeats++;
// clip repeats at 4
if (sRepeats > 4) {
sRepeats = 4;
}
/*
* Test stop and start of 50 us receiver timer
*/
Serial.println(F("Stop receiver"));
IrReceiver.stop();
delay(DELAY_AFTER_LOOP); // additional delay at the end of each loop
Serial.println(F("Start receiver"));
IrReceiver.start(); // For ESP32 timerEnableReceiveInterrupt() is sufficient here, since timer is not reconfigured by another task
}