|
| 1 | +""" |
| 2 | +Module for reading ME6000 .tff format files. |
| 3 | +
|
| 4 | +http://www.biomation.com/kin/me6000.htm |
| 5 | +
|
| 6 | +""" |
| 7 | +import datetime |
| 8 | +import os |
| 9 | +import struct |
| 10 | + |
| 11 | +import numpy as np |
| 12 | + |
| 13 | + |
| 14 | +def rdtff(file_name, cut_end=False): |
| 15 | + """ |
| 16 | + Read values from a tff file |
| 17 | +
|
| 18 | + Parameters |
| 19 | + ---------- |
| 20 | + file_name : str |
| 21 | + Name of the .tff file to read |
| 22 | + cut_end : bool, optional |
| 23 | + If True, cuts out the last sample for all channels. This is for |
| 24 | + reading files which appear to terminate with the incorrect |
| 25 | + number of samples (ie. sample not present for all channels). |
| 26 | +
|
| 27 | + Returns |
| 28 | + ------- |
| 29 | + signal : numpy array |
| 30 | + A 2d numpy array storing the physical signals from the record. |
| 31 | + fields : dict |
| 32 | + A dictionary containing several key attributes of the read record. |
| 33 | + markers : numpy array |
| 34 | + A 1d numpy array storing the marker locations. |
| 35 | + triggers : numpy array |
| 36 | + A 1d numpy array storing the trigger locations. |
| 37 | +
|
| 38 | + Notes |
| 39 | + ----- |
| 40 | + This function is slow because tff files may contain any number of |
| 41 | + escape sequences interspersed with the signals. There is no way to |
| 42 | + know the number of samples/escape sequences beforehand, so the file |
| 43 | + is inefficiently parsed a small chunk at a time. |
| 44 | +
|
| 45 | + It is recommended that you convert your tff files to wfdb format. |
| 46 | +
|
| 47 | + """ |
| 48 | + file_size = os.path.getsize(file_name) |
| 49 | + with open(file_name, 'rb') as fp: |
| 50 | + fields, file_fields = _rdheader(fp) |
| 51 | + signal, markers, triggers = _rdsignal(fp, file_size=file_size, |
| 52 | + header_size=file_fields['header_size'], |
| 53 | + n_sig=file_fields['n_sig'], |
| 54 | + bit_width=file_fields['bit_width'], |
| 55 | + is_signed=file_fields['is_signed'], |
| 56 | + cut_end=cut_end) |
| 57 | + return signal, fields, markers, triggers |
| 58 | + |
| 59 | + |
| 60 | +def _rdheader(fp): |
| 61 | + """ |
| 62 | + Read header info of the windaq file |
| 63 | + """ |
| 64 | + tag = None |
| 65 | + # The '2' tag indicates the end of tags. |
| 66 | + while tag != 2: |
| 67 | + # For each header element, there is a tag indicating data type, |
| 68 | + # followed by the data size, followed by the data itself. 0's |
| 69 | + # pad the content to the nearest 4 bytes. If data_len=0, no pad. |
| 70 | + tag = struct.unpack('>H', fp.read(2))[0] |
| 71 | + data_size = struct.unpack('>H', fp.read(2))[0] |
| 72 | + pad_len = (4 - (data_size % 4)) % 4 |
| 73 | + pos = fp.tell() |
| 74 | + # Currently, most tags will be ignored... |
| 75 | + # storage method |
| 76 | + if tag == 1001: |
| 77 | + storage_method = fs = struct.unpack('B', fp.read(1))[0] |
| 78 | + storage_method = {0:'recording', 1:'manual', 2:'online'}[storage_method] |
| 79 | + # fs, unit16 |
| 80 | + elif tag == 1003: |
| 81 | + fs = struct.unpack('>H', fp.read(2))[0] |
| 82 | + # sensor type |
| 83 | + elif tag == 1007: |
| 84 | + # Each byte contains information for one channel |
| 85 | + n_sig = data_size |
| 86 | + channel_data = struct.unpack('>%dB' % data_size, fp.read(data_size)) |
| 87 | + # The documentation states: "0 : Channel is not used" |
| 88 | + # This means the samples are NOT saved. |
| 89 | + channel_map = ((1, 1, 'emg'), |
| 90 | + (15, 30, 'goniometer'), (31, 46, 'accelerometer'), |
| 91 | + (47, 62, 'inclinometer'), |
| 92 | + (63, 78, 'polar_interface'), (79, 94, 'ecg'), |
| 93 | + (95, 110, 'torque'), (111, 126, 'gyrometer'), |
| 94 | + (127, 142, 'sensor')) |
| 95 | + sig_name = [] |
| 96 | + # The number range that the data lies between gives the |
| 97 | + # channel |
| 98 | + for data in channel_data: |
| 99 | + # Default case if byte value falls outside of channel map |
| 100 | + base_name = 'unknown' |
| 101 | + # Unused channel |
| 102 | + if data == 0: |
| 103 | + n_sig -= 1 |
| 104 | + break |
| 105 | + for item in channel_map: |
| 106 | + if item[0] <= data <= item[1]: |
| 107 | + base_name = item[2] |
| 108 | + break |
| 109 | + existing_count = [base_name in name for name in sig_name].count(True) |
| 110 | + sig_name.append('%s_%d' % (base_name, existing_count)) |
| 111 | + # Display scale. Probably not useful. |
| 112 | + elif tag == 1009: |
| 113 | + # 100, 500, 1000, 2500, or 8500uV |
| 114 | + display_scale = struct.unpack('>I', fp.read(4))[0] |
| 115 | + # sample format, uint8 |
| 116 | + elif tag == 3: |
| 117 | + sample_fmt = struct.unpack('B', fp.read(1))[0] |
| 118 | + is_signed = bool(sample_fmt >> 7) |
| 119 | + # ie. 8 or 16 bits |
| 120 | + bit_width = sample_fmt & 127 |
| 121 | + # Measurement start time - seconds from 1.1.1970 UTC |
| 122 | + elif tag == 101: |
| 123 | + n_seconds = struct.unpack('>I', fp.read(4))[0] |
| 124 | + base_datetime = datetime.datetime.utcfromtimestamp(n_seconds) |
| 125 | + base_date = base_datetime.date() |
| 126 | + base_time = base_datetime.time() |
| 127 | + # Measurement start time - minutes from UTC |
| 128 | + elif tag == 102: |
| 129 | + n_minutes = struct.unpack('>h', fp.read(2))[0] |
| 130 | + # Go to the next tag |
| 131 | + fp.seek(pos + data_size + pad_len) |
| 132 | + header_size = fp.tell() |
| 133 | + # For interpreting the waveforms |
| 134 | + fields = {'fs':fs, 'n_sig':n_sig, 'sig_name':sig_name, |
| 135 | + 'base_time':base_time, 'base_date':base_date} |
| 136 | + # For reading the signal samples |
| 137 | + file_fields = {'header_size':header_size, 'n_sig':n_sig, |
| 138 | + 'bit_width':bit_width, 'is_signed':is_signed} |
| 139 | + return fields, file_fields |
| 140 | + |
| 141 | + |
| 142 | +def _rdsignal(fp, file_size, header_size, n_sig, bit_width, is_signed, cut_end): |
| 143 | + """ |
| 144 | + Read the signal |
| 145 | +
|
| 146 | + Parameters |
| 147 | + ---------- |
| 148 | + cut_end : bool, optional |
| 149 | + If True, enables reading the end of files which appear to terminate |
| 150 | + with the incorrect number of samples (ie. sample not present for all channels), |
| 151 | + by checking and skipping the reading the end of such files. |
| 152 | + Checking this option makes reading slower. |
| 153 | + """ |
| 154 | + # Cannot initially figure out signal length because there |
| 155 | + # are escape sequences. |
| 156 | + fp.seek(header_size) |
| 157 | + signal_size = file_size - header_size |
| 158 | + byte_width = int(bit_width / 8) |
| 159 | + # numpy dtype |
| 160 | + dtype = str(byte_width) |
| 161 | + if is_signed: |
| 162 | + dtype = 'i' + dtype |
| 163 | + else: |
| 164 | + dtype = 'u' + dtype |
| 165 | + # big endian |
| 166 | + dtype = '>' + dtype |
| 167 | + # The maximum possible samples given the file size |
| 168 | + # All channels must be present |
| 169 | + max_samples = int(signal_size / byte_width) |
| 170 | + max_samples = max_samples - max_samples % n_sig |
| 171 | + # Output information |
| 172 | + signal = np.empty(max_samples, dtype=dtype) |
| 173 | + markers = [] |
| 174 | + triggers = [] |
| 175 | + # Number of (total) samples read |
| 176 | + sample_num = 0 |
| 177 | + |
| 178 | + # Read one sample for all channels at a time |
| 179 | + if cut_end: |
| 180 | + stop_byte = file_size - n_sig * byte_width + 1 |
| 181 | + while fp.tell() < stop_byte: |
| 182 | + chunk = fp.read(2) |
| 183 | + sample_num = _get_sample(fp, chunk, n_sig, dtype, signal, markers, triggers, sample_num) |
| 184 | + else: |
| 185 | + while True: |
| 186 | + chunk = fp.read(2) |
| 187 | + if not chunk: |
| 188 | + break |
| 189 | + sample_num = _get_sample(fp, chunk, n_sig, dtype, signal, markers, triggers, sample_num) |
| 190 | + |
| 191 | + # No more bytes to read. Reshape output arguments. |
| 192 | + signal = signal[:sample_num] |
| 193 | + signal = signal.reshape((-1, n_sig)) |
| 194 | + markers = np.array(markers, dtype='int') |
| 195 | + triggers = np.array(triggers, dtype='int') |
| 196 | + return signal, markers, triggers |
| 197 | + |
| 198 | + |
| 199 | +def _get_sample(fp, chunk, n_sig, dtype, signal, markers, triggers, sample_num): |
| 200 | + tag = struct.unpack('>h', chunk)[0] |
| 201 | + # Escape sequence |
| 202 | + if tag == -32768: |
| 203 | + # Escape sequence structure: int16 marker, uint8 type, |
| 204 | + # uint8 length, uint8 * length data, padding % 2 |
| 205 | + escape_type = struct.unpack('B', fp.read(1))[0] |
| 206 | + data_len = struct.unpack('B', fp.read(1))[0] |
| 207 | + # Marker* |
| 208 | + if escape_type == 1: |
| 209 | + # *In manual mode, this could be block start/top time. |
| 210 | + # But we are it is just a single time marker. |
| 211 | + markers.append(sample_num / n_sig) |
| 212 | + # Trigger |
| 213 | + elif escape_type == 2: |
| 214 | + triggers.append(sample_num / n_sig) |
| 215 | + fp.seek(data_len + data_len % 2, 1) |
| 216 | + # Regular samples |
| 217 | + else: |
| 218 | + fp.seek(-2, 1) |
| 219 | + signal[sample_num:sample_num + n_sig] = np.fromfile( |
| 220 | + fp, dtype=dtype, count=n_sig) |
| 221 | + sample_num += n_sig |
| 222 | + return sample_num |
0 commit comments