|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": null, |
| 6 | + "metadata": { |
| 7 | + "id": "iImkWEpRSiRq" |
| 8 | + }, |
| 9 | + "outputs": [], |
| 10 | + "source": [ |
| 11 | + "\n", |
| 12 | + "# Load libraries\n", |
| 13 | + "import pandas as pd\n", |
| 14 | + "import numpy as np\n", |
| 15 | + "from sklearn.datasets import load_iris, make_regression\n", |
| 16 | + "from sklearn.feature_selection import SelectKBest, chi2, f_classif, SelectPercentile, VarianceThreshold, RFECV\n", |
| 17 | + "from sklearn.preprocessing import StandardScaler\n", |
| 18 | + "import warnings\n", |
| 19 | + "from sklearn import datasets, linear_model" |
| 20 | + ] |
| 21 | + }, |
| 22 | + { |
| 23 | + "cell_type": "code", |
| 24 | + "execution_count": null, |
| 25 | + "metadata": { |
| 26 | + "colab": { |
| 27 | + "base_uri": "https://localhost:8080/" |
| 28 | + }, |
| 29 | + "id": "ZEK7KAyzSokS", |
| 30 | + "outputId": "7ce72382-c116-4f51-df7b-1f975c1c25f8" |
| 31 | + }, |
| 32 | + "outputs": [], |
| 33 | + "source": [ |
| 34 | + "# Load libraries\n", |
| 35 | + "# import data\n", |
| 36 | + "iris = datasets.load_iris()\n", |
| 37 | + "# Create features and target\n", |
| 38 | + "features_i = iris.data\n", |
| 39 | + "target_i = iris.target\n", |
| 40 | + "# thresholder creation\n", |
| 41 | + "thresholder = VarianceThreshold(threshold=.4)\n", |
| 42 | + "# high variance feature matrix creation\n", |
| 43 | + "f_high_variance = thresholder.fit_transform(features_i)\n", |
| 44 | + "# View high variance feature matrix\n", |
| 45 | + "f_high_variance[0:3]" |
| 46 | + ] |
| 47 | + }, |
| 48 | + { |
| 49 | + "cell_type": "code", |
| 50 | + "execution_count": null, |
| 51 | + "metadata": { |
| 52 | + "colab": { |
| 53 | + "base_uri": "https://localhost:8080/" |
| 54 | + }, |
| 55 | + "id": "7ZZgOg1-SpuX", |
| 56 | + "outputId": "a869adde-0b29-4630-9661-34377f110d4f" |
| 57 | + }, |
| 58 | + "outputs": [], |
| 59 | + "source": [ |
| 60 | + "# View variances\n", |
| 61 | + "thresholder.fit(features_i).variances_" |
| 62 | + ] |
| 63 | + }, |
| 64 | + { |
| 65 | + "cell_type": "code", |
| 66 | + "execution_count": null, |
| 67 | + "metadata": { |
| 68 | + "colab": { |
| 69 | + "base_uri": "https://localhost:8080/" |
| 70 | + }, |
| 71 | + "id": "zYNK4wP5Sq9R", |
| 72 | + "outputId": "30e18ea5-4b63-43e5-819e-9a99251dfae6" |
| 73 | + }, |
| 74 | + "outputs": [], |
| 75 | + "source": [ |
| 76 | + "\n", |
| 77 | + "# feature matrix stantardization\n", |
| 78 | + "scaler = StandardScaler()\n", |
| 79 | + "f_std = scaler.fit_transform(features_i)\n", |
| 80 | + "# variance of each feature calculation\n", |
| 81 | + "selection = VarianceThreshold()\n", |
| 82 | + "selection.fit(f_std).variances_" |
| 83 | + ] |
| 84 | + }, |
| 85 | + { |
| 86 | + "cell_type": "code", |
| 87 | + "execution_count": null, |
| 88 | + "metadata": { |
| 89 | + "colab": { |
| 90 | + "base_uri": "https://localhost:8080/" |
| 91 | + }, |
| 92 | + "id": "jDGMP97LSuiB", |
| 93 | + "outputId": "c1b9d537-495f-4109-ef75-324fe9943668" |
| 94 | + }, |
| 95 | + "outputs": [], |
| 96 | + "source": [ |
| 97 | + "# feature matrix creation with:\n", |
| 98 | + "# for Feature 0: 80% class 0\n", |
| 99 | + "# for Feature 1: 80% class 1\n", |
| 100 | + "# for Feature 2: 60% class 0, 40% class 1\n", |
| 101 | + "features_i = [[0, 2, 0],\n", |
| 102 | + "[0, 1, 1],\n", |
| 103 | + "[0, 1, 0],\n", |
| 104 | + "[0, 1, 1],\n", |
| 105 | + "[1, 0, 0]]\n", |
| 106 | + "# threshold by variance\n", |
| 107 | + "thresholding = VarianceThreshold(threshold=(.65 * (1 - .65)))\n", |
| 108 | + "thresholding.fit_transform(features_i)" |
| 109 | + ] |
| 110 | + }, |
| 111 | + { |
| 112 | + "cell_type": "code", |
| 113 | + "execution_count": null, |
| 114 | + "metadata": { |
| 115 | + "colab": { |
| 116 | + "base_uri": "https://localhost:8080/", |
| 117 | + "height": 198 |
| 118 | + }, |
| 119 | + "id": "JvnObeKXS6xm", |
| 120 | + "outputId": "19dac143-9407-4bb4-cc23-b19b06025617" |
| 121 | + }, |
| 122 | + "outputs": [], |
| 123 | + "source": [ |
| 124 | + "# Create feature matrix with two highly correlated features\n", |
| 125 | + "features_m = np.array([[1, 1, 1],\n", |
| 126 | + "[2, 2, 0],\n", |
| 127 | + "[3, 3, 1],\n", |
| 128 | + "[4, 4, 0],\n", |
| 129 | + "[5, 5, 1],\n", |
| 130 | + "[6, 6, 0],\n", |
| 131 | + "[7, 7, 1],\n", |
| 132 | + "[8, 7, 0],\n", |
| 133 | + "[9, 7, 1]])\n", |
| 134 | + "# Conversion of feature matrix\n", |
| 135 | + "dataframe = pd.DataFrame(features_m)\n", |
| 136 | + "# correlation matrix creation\n", |
| 137 | + "corr_m = dataframe.corr().abs()\n", |
| 138 | + "# upper triangle selection\n", |
| 139 | + "upper1 = corr_m.where(np.triu(np.ones(corr_m.shape),\n", |
| 140 | + "k=1).astype(np.bool))\n", |
| 141 | + "# For correlation greater than 0.85, Find index of feature columns\n", |
| 142 | + "droping = [col for col in upper1.columns if any(upper1[col] > 0.85)]\n", |
| 143 | + "# Drop features\n", |
| 144 | + "dataframe.drop(dataframe.columns[droping], axis=1).head(3)" |
| 145 | + ] |
| 146 | + }, |
| 147 | + { |
| 148 | + "cell_type": "code", |
| 149 | + "execution_count": null, |
| 150 | + "metadata": { |
| 151 | + "colab": { |
| 152 | + "base_uri": "https://localhost:8080/" |
| 153 | + }, |
| 154 | + "id": "Dos1ZfkDS-Zd", |
| 155 | + "outputId": "17e96f0d-a55a-4943-90a9-99aa3c31fad3" |
| 156 | + }, |
| 157 | + "outputs": [], |
| 158 | + "source": [ |
| 159 | + "# Load data\n", |
| 160 | + "iris_i = load_iris()\n", |
| 161 | + "features_v = iris.data\n", |
| 162 | + "target = iris.target\n", |
| 163 | + "# categorical data coversion\n", |
| 164 | + "features_v = features_v.astype(int)\n", |
| 165 | + "# Selection of two features using highest chi-squared \n", |
| 166 | + "chi2_s = SelectKBest(chi2, k=2)\n", |
| 167 | + "f_kbest = chi2_s.fit_transform(features_v, target)\n", |
| 168 | + "# Show results\n", |
| 169 | + "print(\"Original number of features:\", features_v.shape[1])\n", |
| 170 | + "print(\"Reduced number of features:\", f_kbest.shape[1])" |
| 171 | + ] |
| 172 | + }, |
| 173 | + { |
| 174 | + "cell_type": "code", |
| 175 | + "execution_count": null, |
| 176 | + "metadata": { |
| 177 | + "colab": { |
| 178 | + "base_uri": "https://localhost:8080/" |
| 179 | + }, |
| 180 | + "id": "y10u_gQbTCwR", |
| 181 | + "outputId": "651182ab-d857-4a3d-db61-4fff866d167c" |
| 182 | + }, |
| 183 | + "outputs": [], |
| 184 | + "source": [ |
| 185 | + "# Selection of two features using highest F-values\n", |
| 186 | + "f_selector = SelectKBest(f_classif, k=2)\n", |
| 187 | + "f_kbest = f_selector.fit_transform(features_v, target)\n", |
| 188 | + "# Pisplay results\n", |
| 189 | + "print(\"Original number of features:\", features_v.shape[1])\n", |
| 190 | + "print(\"Reduced number of features:\", f_kbest.shape[1])" |
| 191 | + ] |
| 192 | + }, |
| 193 | + { |
| 194 | + "cell_type": "code", |
| 195 | + "execution_count": null, |
| 196 | + "metadata": { |
| 197 | + "colab": { |
| 198 | + "base_uri": "https://localhost:8080/" |
| 199 | + }, |
| 200 | + "id": "5NXAa6UKTHiu", |
| 201 | + "outputId": "c34866b2-c08c-4020-b14d-78deb98f2834" |
| 202 | + }, |
| 203 | + "outputs": [], |
| 204 | + "source": [ |
| 205 | + "# Selection of top 65% of features \n", |
| 206 | + "f_selector = SelectPercentile(f_classif, percentile=65)\n", |
| 207 | + "f_kbest = f_selector.fit_transform(features_v, target)\n", |
| 208 | + "# Display results\n", |
| 209 | + "print(\"Original number of features:\", features_v.shape[1])\n", |
| 210 | + "print(\"Reduced number of features:\", f_kbest.shape[1])" |
| 211 | + ] |
| 212 | + }, |
| 213 | + { |
| 214 | + "cell_type": "code", |
| 215 | + "execution_count": null, |
| 216 | + "metadata": { |
| 217 | + "colab": { |
| 218 | + "base_uri": "https://localhost:8080/" |
| 219 | + }, |
| 220 | + "id": "39-Wq-F9TKVg", |
| 221 | + "outputId": "e52c0537-2245-4f12-ea9a-ace232984ec1" |
| 222 | + }, |
| 223 | + "outputs": [], |
| 224 | + "source": [ |
| 225 | + "# Load libraries\n", |
| 226 | + "# Suppress an annoying but harmless warning\n", |
| 227 | + "warnings.filterwarnings(action=\"ignore\", module=\"scipy\",\n", |
| 228 | + "message=\"^internal gelsd\")\n", |
| 229 | + "# features matrix, target vector, true coefficients\n", |
| 230 | + "features_f, target_t = make_regression(n_samples = 10000,\n", |
| 231 | + "n_features = 100,\n", |
| 232 | + "n_informative = 2,\n", |
| 233 | + "random_state = 1)\n", |
| 234 | + "# linear regression creation\n", |
| 235 | + "ols = linear_model.LinearRegression()\n", |
| 236 | + "# Recursive features elimination\n", |
| 237 | + "rfecv = RFECV(estimator=ols, step=2, scoring=\"neg_mean_squared_error\")\n", |
| 238 | + "rfecv.fit(features_f, target_t)\n", |
| 239 | + "rfecv.transform(features_f)" |
| 240 | + ] |
| 241 | + }, |
| 242 | + { |
| 243 | + "cell_type": "code", |
| 244 | + "execution_count": null, |
| 245 | + "metadata": { |
| 246 | + "colab": { |
| 247 | + "base_uri": "https://localhost:8080/" |
| 248 | + }, |
| 249 | + "id": "Ut1mgIGEUhJM", |
| 250 | + "outputId": "f365a4d5-63f4-4a55-e828-d331e6f06308" |
| 251 | + }, |
| 252 | + "outputs": [], |
| 253 | + "source": [ |
| 254 | + "# Number of best features\n", |
| 255 | + "rfecv.n_features_" |
| 256 | + ] |
| 257 | + }, |
| 258 | + { |
| 259 | + "cell_type": "code", |
| 260 | + "execution_count": null, |
| 261 | + "metadata": { |
| 262 | + "colab": { |
| 263 | + "base_uri": "https://localhost:8080/" |
| 264 | + }, |
| 265 | + "id": "Lpt7I_Q0UjN1", |
| 266 | + "outputId": "4d6938dc-d813-42a5-c1b7-9ba4865a0e86" |
| 267 | + }, |
| 268 | + "outputs": [], |
| 269 | + "source": [ |
| 270 | + "# What the best categories ?\n", |
| 271 | + "rfecv.support_" |
| 272 | + ] |
| 273 | + }, |
| 274 | + { |
| 275 | + "cell_type": "code", |
| 276 | + "execution_count": null, |
| 277 | + "metadata": { |
| 278 | + "colab": { |
| 279 | + "base_uri": "https://localhost:8080/" |
| 280 | + }, |
| 281 | + "id": "ojYKsEbTUkMu", |
| 282 | + "outputId": "98652d92-f58f-41fe-9ba1-b1ecd3ef7ecb" |
| 283 | + }, |
| 284 | + "outputs": [], |
| 285 | + "source": [ |
| 286 | + "# We can even see how the features are ranked\n", |
| 287 | + "rfecv.ranking_" |
| 288 | + ] |
| 289 | + } |
| 290 | + ], |
| 291 | + "metadata": { |
| 292 | + "colab": { |
| 293 | + "name": "Untitled42.ipynb", |
| 294 | + "provenance": [] |
| 295 | + }, |
| 296 | + "kernelspec": { |
| 297 | + "display_name": "Python 3", |
| 298 | + "name": "python3" |
| 299 | + }, |
| 300 | + "language_info": { |
| 301 | + "name": "python" |
| 302 | + } |
| 303 | + }, |
| 304 | + "nbformat": 4, |
| 305 | + "nbformat_minor": 0 |
| 306 | +} |
0 commit comments