You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
<tdclass="markdownTableBodyRight"><code>bc_[x,y,z]\beg[end]</code></td><tdclass="markdownTableBodyCenter">Integer </td><tdclass="markdownTableBodyLeft">Beginning [ending] boundary condition in the $[x,y,z]$-direction (negative integer, see table Boundary Conditions) </td></tr>
385
385
<trclass="markdownTableRowEven">
386
+
<tdclass="markdownTableBodyRight"><code>bc_[x,y,z]\vb[1,2,3]</code>‡ </td><tdclass="markdownTableBodyCenter">Real </td><tdclass="markdownTableBodyLeft">Velocity in the (x,1), (y, 2), (z,3) direction applied to <code>bc_[x,y,z]beg</code></td></tr>
387
+
<trclass="markdownTableRowOdd">
388
+
<tdclass="markdownTableBodyRight"><code>bc_[x,y,z]\ve[1,2,3]</code>‡ </td><tdclass="markdownTableBodyCenter">Real </td><tdclass="markdownTableBodyLeft">Velocity in the (x,1), (y, 2), (z,3) direction applied to <code>bc_[x,y,z]end</code></td></tr>
<tdclass="markdownTableBodyRight"><code>alt_soundspeed</code> * </td><tdclass="markdownTableBodyCenter">Logical </td><tdclass="markdownTableBodyLeft">Alternate sound speed and $K \nabla \cdot u$ for 5-equation model </td></tr>
<li>* Options that work only with <code>model_eqns</code> $=2$.</li>
420
424
<li>† Options that work only with <code>cyl_coord</code> $=$ <code>False</code>.</li>
425
+
<li>‡ Options that work only with <code>bc_[x,y,z]%[beg,end] = -15</code> and/or <code>bc_[x,y,z]%[beg,end] = -16</code></li>
421
426
</ul>
422
427
<p>The table lists simulation algorithm parameters. The parameters are used to specify options in algorithms that are used to integrate the governing equations of the multi-component flow based on the initial condition. Models and assumptions that are used to formulate and discritize the governing equations are described in <ahref="references.md#Bryngelson19">Bryngelson et al. (2019)</a>. Details of the simulation algorithms and implementation of the WENO scheme can be found in <ahref="references.md#Coralic15">Coralic (2015)</a>.</p>
423
428
<ul>
424
429
<li><code>bc_[x,y,z]%[beg,end]</code> specifies the boundary conditions at the beginning and the end of domain boundaries in each coordinate direction by a negative integer from -1 through -12. See table Boundary Conditions for details.</li>
430
+
<li><code>bc_[x,y,z]\vb[1,2,3]</code> specifies the velocity in the (x,1), (y,2), (z,3) direction applied to <code>bc_[x,y,z]beg</code> when using <code>bc_[x,y,z]beg = -16</code>. Tangential velocities require viscosity, <code>weno_avg = T</code>, and <code>bc_[x,y,z]beg = -16</code> to work properly. Normal velocities require <code>bc_[x,y,z]\end = -15</code> or <code>\bc_[x,y,z]\end = -16</code> to work properly.</li>
431
+
<li><code>bc_[x,y,z]\ve[1,2,3]</code> specifies the velocity in the (x,1), (y,2), (z,3) direction applied to <code>bc_[x,y,z]beg</code> when using <code>bc_[x,y,z]end = -16</code>. Tangential velocities require viscosity, <code>weno_avg = T</code>, and <code>bc_[x,y,z]\end = 16</code> to work properly. Normal velocities require <code>bc_[x,y,z]\end = -15</code> or <code>\bc_[x,y,z]\end = -16</code> to work properly.</li>
425
432
<li><code>model_eqns</code> specifies the choice of the multi-component model that is used to formulate the dynamics of the flow using integers from 1 through 3. <code>model_eqns</code> $=$ 1, 2, and 3 correspond to $\Gamma$-$\Pi_\infty$ model (<ahref="references.md#Johnsen08">Johnsen, 2008</a>), 5-equation model (<ahref="references.md#Allaire02">Allaire et al., 2002</a>), and 6-equation model (<ahref="references.md#Saurel09">Saurel et al., 2009</a>), respectively. The difference of the two models is assessed by (<ahref="references.md#Schmidmayer19">Schmidmayer et al., 2019</a>). Note that some code parameters are only compatible with 5-equation model.</li>
426
433
<li><code>alt_soundspeed</code> activates the source term in the advection equations for the volume fractions, $K\nabla\cdot \underline{u}$, that regularizes the speed of sound in the mixture region when the 5-equation model is used. The effect and use of the source term are assessed by <ahref="references.md#Schmidmayer19">Schmidmayer et al., 2019</a>.</li>
427
434
<li><code>adv_alphan</code> activates the advection equations of all the components of fluid. If this parameter is set false, the void fraction of $N$-th component is computed as the residual of the void fraction of the other components at each cell:</li>
<p>Reference: C. W. Shu, S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes, Journal of Computational Physics 77 (2) (1988) 439–471. doi:10.1016/0021-9991(88)90177-5.</p>
<p>Reference: V. A. Titarev, E. F. Toro, Finite-volume WENO schemes for three-dimensional conservation laws, Journal of Computational Physics 201 (1) (2004) 238–260.</p>
</div><!-- fragment --><h1><aclass="anchor" id="autotoc_md50"></a>
200
-
Lax shock tube problem (1D)</h1>
201
-
<p>Reference: P. D. Lax, Weak solutions of nonlinear hyperbolic equations and their numerical computation, Communications on pure and applied mathematics 7 (1) (1954) 159–193.</p>
202
-
<h2><aclass="anchor" id="autotoc_md51"></a>
157
+
</div><!-- fragment --><h1><aclass="anchor" id="autotoc_md41"></a>
158
+
Isentropic vortex problem (2D)</h1>
159
+
<p>Reference: Coralic, V., & Colonius, T. (2014). Finite-volume Weno scheme for viscous compressible multicomponent flows. Journal of Computational Physics, 274, 95–121. <ahref="https://doi.org/10.1016/j.jcp.2014.06.003">https://doi.org/10.1016/j.jcp.2014.06.003</a></p>
<p>Reference: Bezgin, D. A., & Buhendwa A. B., & Adams N. A. (2022). JAX-FLUIDS: A fully-differentiable high-order computational fluid dynamics solver for compressible two-phase flows. arXiv:2203.13760</p>
186
+
<p>Reference: Ghia, U., & Ghia, K. N., & Shin, C. T. (1982). High-re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. Journal of Computational Physics, 48, 387-411</p>
<p>Reference: Chamarthi, A., & Hoffmann, N., & Nishikawa, H., & Frankel S. (2023). Implicit gradients based conservative numerical scheme for compressible flows. arXiv:2110.05461</p>
<p>Reference: V. A. Titarev, E. F. Toro, Finite-volume WENO schemes for three-dimensional conservation laws, Journal of Computational Physics 201 (1) (2004) 238–260.</p>
<p>Reference: P. D. Lax, Weak solutions of nonlinear hyperbolic equations and their numerical computation, Communications on pure and applied mathematics 7 (1) (1954) 159–193.</p>
0 commit comments