You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
<p>The <ahref="case.py"><b>3D_weak_scaling</b></a> case depends on two parameters:</p>
141
-
<ul>
142
-
<li><b>The number of MPI ranks</b> (<em>procs</em>): As <em>procs</em> increases, the problem size per rank remains constant. <em>procs</em> is determined using information provided to the case file by <code>mfc.sh run</code>.</li>
143
-
<li><b>GPU memory usage per rank</b> (<em>gbpp</em>): As <em>gbpp</em> increases, the problem size per rank increases and the number of timesteps decreases so that wall times consistent. <em>gbpp</em> is a user-defined optional argument to the <ahref="case.py">case.py</a> file. It can be specified right after the case filepath when invoking <code>mfc.sh run</code>.</li>
144
-
</ul>
145
-
<p>Weak scaling benchmarks can be produced by keeping <em>gbpp</em> constant and varying <em>procs</em>.</p>
146
-
<p>For example, to run a weak scaling test that uses ~4GB of GPU memory per rank on 8 2-rank nodes with case optimization, one could:</p>
147
-
<divclass="fragment"><divclass="line">./mfc.sh run examples/3D_weak_scaling/case.py 4 -t pre_process simulation \</div>
<p>Reference: Chamarthi, A., & Hoffmann, N., & Nishikawa, H., & Frankel S. (2023). Implicit gradients based conservative numerical scheme for compressible flows. arXiv:2110.05461</p>
<p>Reference: Panchal et. al., A Seven-Equation Diffused Interface Method for Resolved Multiphase Flows, JCP, 475 (2023)</p>
165
+
<h1><aclass="anchor" id="autotoc_md34"></a>
166
+
3D Weak Scaling</h1>
167
+
<p>The <ahref="case.py"><b>3D_weak_scaling</b></a> case depends on two parameters:</p>
168
+
<ul>
169
+
<li><b>The number of MPI ranks</b> (<em>procs</em>): As <em>procs</em> increases, the problem size per rank remains constant. <em>procs</em> is determined using information provided to the case file by <code>mfc.sh run</code>.</li>
170
+
<li><b>GPU memory usage per rank</b> (<em>gbpp</em>): As <em>gbpp</em> increases, the problem size per rank increases and the number of timesteps decreases so that wall times consistent. <em>gbpp</em> is a user-defined optional argument to the <ahref="case.py">case.py</a> file. It can be specified right after the case filepath when invoking <code>mfc.sh run</code>.</li>
171
+
</ul>
172
+
<p>Weak scaling benchmarks can be produced by keeping <em>gbpp</em> constant and varying <em>procs</em>.</p>
173
+
<p>For example, to run a weak scaling test that uses ~4GB of GPU memory per rank on 8 2-rank nodes with case optimization, one could:</p>
174
+
<divclass="fragment"><divclass="line">./mfc.sh run examples/3D_weak_scaling/case.py 4 -t pre_process simulation \</div>
</div><!-- fragment --><h1><aclass="anchor" id="autotoc_md35"></a>
178
+
Shu-Osher problem (1D)</h1>
179
+
<p>Reference: C. W. Shu, S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes, Journal of Computational Physics 77 (2) (1988) 439–471. doi:10.1016/0021-9991(88)90177-5.</p>
<p>Reference: V. A. Titarev, E. F. Toro, Finite-volume WENO schemes for three-dimensional conservation laws, Journal of Computational Physics 201 (1) (2004) 238–260.</p>
<p>Reference: P. D. Lax, Weak solutions of nonlinear hyperbolic equations and their numerical computation, Communications on pure and applied mathematics 7 (1) (1954) 159–193.</p>
<p>Reference: Bezgin, D. A., & Buhendwa A. B., & Adams N. A. (2022). JAX-FLUIDS: A fully-differentiable high-order computational fluid dynamics solver for compressible two-phase flows. arXiv:2203.13760</p>
236
251
<p>Reference: Ghia, U., & Ghia, K. N., & Shin, C. T. (1982). High-re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. Journal of Computational Physics, 48, 387-411</p>
<p>Reference: C. W. Shu, S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes, Journal of Computational Physics 77 (2) (1988) 439–471. doi:10.1016/0021-9991(88)90177-5.</p>
0 commit comments