|
136 | 136 | <div class="contents">
|
137 | 137 | <div class="textblock"><p><a class="anchor" id="autotoc_md27"></a> </p>
|
138 | 138 | <h1><a class="anchor" id="autotoc_md28"></a>
|
139 |
| -3D Weak Scaling</h1> |
140 |
| -<p>The <a href="case.py"><b>3D_weak_scaling</b></a> case depends on two parameters:</p> |
141 |
| -<ul> |
142 |
| -<li><b>The number of MPI ranks</b> (<em>procs</em>): As <em>procs</em> increases, the problem size per rank remains constant. <em>procs</em> is determined using information provided to the case file by <code>mfc.sh run</code>.</li> |
143 |
| -<li><b>GPU memory usage per rank</b> (<em>gbpp</em>): As <em>gbpp</em> increases, the problem size per rank increases and the number of timesteps decreases so that wall times consistent. <em>gbpp</em> is a user-defined optional argument to the <a href="case.py">case.py</a> file. It can be specified right after the case filepath when invoking <code>mfc.sh run</code>.</li> |
144 |
| -</ul> |
145 |
| -<p>Weak scaling benchmarks can be produced by keeping <em>gbpp</em> constant and varying <em>procs</em>.</p> |
146 |
| -<p>For example, to run a weak scaling test that uses ~4GB of GPU memory per rank on 8 2-rank nodes with case optimization, one could:</p> |
147 |
| -<div class="fragment"><div class="line">./mfc.sh run examples/3D_weak_scaling/case.py 4 -t pre_process simulation \</div> |
148 |
| -<div class="line"> -e batch -p mypartition -N 8 -n 2 -w "01:00:00" -# "MFC Weak Scaling" \</div> |
149 |
| -<div class="line"> --case-optimization -j 32</div> |
150 |
| -</div><!-- fragment --><h1><a class="anchor" id="autotoc_md29"></a> |
151 |
| -2D Riemann Test (2D)</h1> |
152 |
| -<p>Reference: Chamarthi, A., & Hoffmann, N., & Nishikawa, H., & Frankel S. (2023). Implicit gradients based conservative numerical scheme for compressible flows. arXiv:2110.05461</p> |
153 |
| -<h2><a class="anchor" id="autotoc_md30"></a> |
154 |
| -Density Initial Condition</h2> |
155 |
| -<div class="image"> |
156 |
| -<img src="alpha_rho1_initial-2D_riemann_test-example.png" alt=""/> |
157 |
| -<div class="caption"> |
158 |
| -Density</div></div> |
159 |
| - <h2><a class="anchor" id="autotoc_md31"></a> |
160 |
| -Density Final Condition</h2> |
161 |
| -<div class="image"> |
162 |
| -<img src="alpha_rho1_final-2D_riemann_test-example.png" alt=""/> |
163 |
| -<div class="caption"> |
164 |
| -Density Norms</div></div> |
165 |
| - <h1><a class="anchor" id="autotoc_md32"></a> |
166 | 139 | 2D Hardcodied IC Example</h1>
|
167 |
| -<h2><a class="anchor" id="autotoc_md33"></a> |
| 140 | +<h2><a class="anchor" id="autotoc_md29"></a> |
168 | 141 | Initial Condition</h2>
|
169 | 142 | <div class="image">
|
170 | 143 | <img src="initial-2D_hardcodied_ic-example.png" alt=""/>
|
171 | 144 | <div class="caption">
|
172 | 145 | Initial Condition</div></div>
|
173 |
| - <h2><a class="anchor" id="autotoc_md34"></a> |
| 146 | + <h2><a class="anchor" id="autotoc_md30"></a> |
174 | 147 | Result</h2>
|
175 | 148 | <p><img src="result-2D_hardcodied_ic-example.png" alt="" class="inline" title="Result"/> </p>
|
176 |
| -<h1><a class="anchor" id="autotoc_md35"></a> |
177 |
| -Shock Droplet (2D)</h1> |
178 |
| -<p>Reference: Panchal et. al., A Seven-Equation Diffused Interface Method for Resolved Multiphase Flows, JCP, 475 (2023)</p> |
179 |
| -<h2><a class="anchor" id="autotoc_md36"></a> |
180 |
| -Initial Condition</h2> |
181 |
| -<div class="image"> |
182 |
| -<img src="initial-2D_shockdroplet-example.png" alt=""/> |
183 |
| -<div class="caption"> |
184 |
| -Initial Condition</div></div> |
185 |
| - <h2><a class="anchor" id="autotoc_md37"></a> |
186 |
| -Result</h2> |
187 |
| -<p><img src="result-2D_shockdroplet-example.png" alt="" class="inline" title="Result"/> </p> |
188 |
| -<h1><a class="anchor" id="autotoc_md38"></a> |
| 149 | +<h1><a class="anchor" id="autotoc_md31"></a> |
189 | 150 | Isentropic vortex problem (2D)</h1>
|
190 | 151 | <p>Reference: Coralic, V., & Colonius, T. (2014). Finite-volume Weno scheme for viscous compressible multicomponent flows. Journal of Computational Physics, 274, 95–121. <a href="https://doi.org/10.1016/j.jcp.2014.06.003">https://doi.org/10.1016/j.jcp.2014.06.003</a></p>
|
191 |
| -<h2><a class="anchor" id="autotoc_md39"></a> |
| 152 | +<h2><a class="anchor" id="autotoc_md32"></a> |
192 | 153 | Density</h2>
|
193 | 154 | <div class="image">
|
194 | 155 | <img src="alpha_rho1-2D_isentropicvortex-example.png" alt=""/>
|
195 | 156 | <div class="caption">
|
196 | 157 | Density</div></div>
|
197 |
| - <h2><a class="anchor" id="autotoc_md40"></a> |
| 158 | + <h2><a class="anchor" id="autotoc_md33"></a> |
198 | 159 | Density Norms</h2>
|
199 | 160 | <div class="image">
|
200 | 161 | <img src="density_norms-2D_isentropicvortex-example.png" alt=""/>
|
201 | 162 | <div class="caption">
|
202 | 163 | Density Norms</div></div>
|
203 |
| - <h1><a class="anchor" id="autotoc_md41"></a> |
| 164 | + <h1><a class="anchor" id="autotoc_md34"></a> |
204 | 165 | Titarev-Toro problem (1D)</h1>
|
205 | 166 | <p>Reference: V. A. Titarev, E. F. Toro, Finite-volume WENO schemes for three-dimensional conservation laws, Journal of Computational Physics 201 (1) (2004) 238–260.</p>
|
206 |
| -<h2><a class="anchor" id="autotoc_md42"></a> |
| 167 | +<h2><a class="anchor" id="autotoc_md35"></a> |
207 | 168 | Initial Condition</h2>
|
208 | 169 | <div class="image">
|
209 | 170 | <img src="initial-1D_titarevtorro-example.png" alt=""/>
|
210 | 171 | <div class="caption">
|
211 | 172 | Initial Condition</div></div>
|
212 |
| - <h2><a class="anchor" id="autotoc_md43"></a> |
| 173 | + <h2><a class="anchor" id="autotoc_md36"></a> |
213 | 174 | Result</h2>
|
214 | 175 | <div class="image">
|
215 | 176 | <img src="result-1D_titarevtorro-example.png" alt=""/>
|
216 | 177 | <div class="caption">
|
217 | 178 | Result</div></div>
|
218 |
| - <h1><a class="anchor" id="autotoc_md44"></a> |
| 179 | + <h1><a class="anchor" id="autotoc_md37"></a> |
219 | 180 | Lax shock tube problem (1D)</h1>
|
220 | 181 | <p>Reference: P. D. Lax, Weak solutions of nonlinear hyperbolic equations and their numerical computation, Communications on pure and applied mathematics 7 (1) (1954) 159–193.</p>
|
221 |
| -<h2><a class="anchor" id="autotoc_md45"></a> |
| 182 | +<h2><a class="anchor" id="autotoc_md38"></a> |
222 | 183 | Initial Condition</h2>
|
223 | 184 | <div class="image">
|
224 | 185 | <img src="initial-1D_laxshocktube-example.png" alt=""/>
|
225 | 186 | <div class="caption">
|
226 | 187 | Initial Condition</div></div>
|
227 |
| - <h2><a class="anchor" id="autotoc_md46"></a> |
| 188 | + <h2><a class="anchor" id="autotoc_md39"></a> |
228 | 189 | Result</h2>
|
229 | 190 | <div class="image">
|
230 | 191 | <img src="result-1D_laxshocktube-example.png" alt=""/>
|
231 | 192 | <div class="caption">
|
232 | 193 | Result</div></div>
|
233 |
| - <h1><a class="anchor" id="autotoc_md47"></a> |
234 |
| -Lid-Driven Cavity Problem (2D)</h1> |
235 |
| -<p>Reference: Bezgin, D. A., & Buhendwa A. B., & Adams N. A. (2022). JAX-FLUIDS: A fully-differentiable high-order computational fluid dynamics solver for compressible two-phase flows. arXiv:2203.13760</p> |
236 |
| -<p>Reference: Ghia, U., & Ghia, K. N., & Shin, C. T. (1982). High-re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. Journal of Computational Physics, 48, 387-411</p> |
237 |
| -<p>Video: <a href="https://youtube.com/shorts/JEP28scZrBM?feature=share">https://youtube.com/shorts/JEP28scZrBM?feature=share</a></p> |
238 |
| -<h2><a class="anchor" id="autotoc_md48"></a> |
239 |
| -Final Condition</h2> |
| 194 | + <h1><a class="anchor" id="autotoc_md40"></a> |
| 195 | +Shock Droplet (2D)</h1> |
| 196 | +<p>Reference: Panchal et. al., A Seven-Equation Diffused Interface Method for Resolved Multiphase Flows, JCP, 475 (2023)</p> |
| 197 | +<h2><a class="anchor" id="autotoc_md41"></a> |
| 198 | +Initial Condition</h2> |
240 | 199 | <div class="image">
|
241 |
| -<img src="final_condition-2D_lid_driven_cavity-example.png" alt=""/> |
| 200 | +<img src="initial-2D_shockdroplet-example.png" alt=""/> |
242 | 201 | <div class="caption">
|
243 |
| -Final Condition</div></div> |
244 |
| - <h2><a class="anchor" id="autotoc_md49"></a> |
245 |
| -Centerline Velocities</h2> |
| 202 | +Initial Condition</div></div> |
| 203 | + <h2><a class="anchor" id="autotoc_md42"></a> |
| 204 | +Result</h2> |
| 205 | +<p><img src="result-2D_shockdroplet-example.png" alt="" class="inline" title="Result"/> </p> |
| 206 | +<h1><a class="anchor" id="autotoc_md43"></a> |
| 207 | +2D Riemann Test (2D)</h1> |
| 208 | +<p>Reference: Chamarthi, A., & Hoffmann, N., & Nishikawa, H., & Frankel S. (2023). Implicit gradients based conservative numerical scheme for compressible flows. arXiv:2110.05461</p> |
| 209 | +<h2><a class="anchor" id="autotoc_md44"></a> |
| 210 | +Density Initial Condition</h2> |
246 | 211 | <div class="image">
|
247 |
| -<img src="centerline_velocities-2D_lid_driven_cavity-example.png" alt=""/> |
| 212 | +<img src="alpha_rho1_initial-2D_riemann_test-example.png" alt=""/> |
248 | 213 | <div class="caption">
|
249 |
| -Centerline Velocities</div></div> |
250 |
| - <h1><a class="anchor" id="autotoc_md50"></a> |
| 214 | +Density</div></div> |
| 215 | + <h2><a class="anchor" id="autotoc_md45"></a> |
| 216 | +Density Final Condition</h2> |
| 217 | +<div class="image"> |
| 218 | +<img src="alpha_rho1_final-2D_riemann_test-example.png" alt=""/> |
| 219 | +<div class="caption"> |
| 220 | +Density Norms</div></div> |
| 221 | + <h1><a class="anchor" id="autotoc_md46"></a> |
251 | 222 | Shu-Osher problem (1D)</h1>
|
252 | 223 | <p>Reference: C. W. Shu, S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes, Journal of Computational Physics 77 (2) (1988) 439–471. doi:10.1016/0021-9991(88)90177-5.</p>
|
253 |
| -<h2><a class="anchor" id="autotoc_md51"></a> |
| 224 | +<h2><a class="anchor" id="autotoc_md47"></a> |
254 | 225 | Initial Condition</h2>
|
255 | 226 | <div class="image">
|
256 | 227 | <img src="initial-1D_shuosher-example.png" alt=""/>
|
257 | 228 | <div class="caption">
|
258 | 229 | Initial Condition</div></div>
|
259 |
| - <h2><a class="anchor" id="autotoc_md52"></a> |
| 230 | + <h2><a class="anchor" id="autotoc_md48"></a> |
260 | 231 | Result</h2>
|
261 | 232 | <div class="image">
|
262 | 233 | <img src="result-1D_shuosher-example.png" alt=""/>
|
263 | 234 | <div class="caption">
|
264 | 235 | Result</div></div>
|
265 |
| - </div></div><!-- contents --> |
| 236 | + <h1><a class="anchor" id="autotoc_md49"></a> |
| 237 | +Lid-Driven Cavity Problem (2D)</h1> |
| 238 | +<p>Reference: Bezgin, D. A., & Buhendwa A. B., & Adams N. A. (2022). JAX-FLUIDS: A fully-differentiable high-order computational fluid dynamics solver for compressible two-phase flows. arXiv:2203.13760</p> |
| 239 | +<p>Reference: Ghia, U., & Ghia, K. N., & Shin, C. T. (1982). High-re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. Journal of Computational Physics, 48, 387-411</p> |
| 240 | +<p>Video: <a href="https://youtube.com/shorts/JEP28scZrBM?feature=share">https://youtube.com/shorts/JEP28scZrBM?feature=share</a></p> |
| 241 | +<h2><a class="anchor" id="autotoc_md50"></a> |
| 242 | +Final Condition</h2> |
| 243 | +<div class="image"> |
| 244 | +<img src="final_condition-2D_lid_driven_cavity-example.png" alt=""/> |
| 245 | +<div class="caption"> |
| 246 | +Final Condition</div></div> |
| 247 | + <h2><a class="anchor" id="autotoc_md51"></a> |
| 248 | +Centerline Velocities</h2> |
| 249 | +<div class="image"> |
| 250 | +<img src="centerline_velocities-2D_lid_driven_cavity-example.png" alt=""/> |
| 251 | +<div class="caption"> |
| 252 | +Centerline Velocities</div></div> |
| 253 | + <h1><a class="anchor" id="autotoc_md52"></a> |
| 254 | +3D Weak Scaling</h1> |
| 255 | +<p>The <a href="case.py"><b>3D_weak_scaling</b></a> case depends on two parameters:</p> |
| 256 | +<ul> |
| 257 | +<li><b>The number of MPI ranks</b> (<em>procs</em>): As <em>procs</em> increases, the problem size per rank remains constant. <em>procs</em> is determined using information provided to the case file by <code>mfc.sh run</code>.</li> |
| 258 | +<li><b>GPU memory usage per rank</b> (<em>gbpp</em>): As <em>gbpp</em> increases, the problem size per rank increases and the number of timesteps decreases so that wall times consistent. <em>gbpp</em> is a user-defined optional argument to the <a href="case.py">case.py</a> file. It can be specified right after the case filepath when invoking <code>mfc.sh run</code>.</li> |
| 259 | +</ul> |
| 260 | +<p>Weak scaling benchmarks can be produced by keeping <em>gbpp</em> constant and varying <em>procs</em>.</p> |
| 261 | +<p>For example, to run a weak scaling test that uses ~4GB of GPU memory per rank on 8 2-rank nodes with case optimization, one could:</p> |
| 262 | +<div class="fragment"><div class="line">./mfc.sh run examples/3D_weak_scaling/case.py 4 -t pre_process simulation \</div> |
| 263 | +<div class="line"> -e batch -p mypartition -N 8 -n 2 -w "01:00:00" -# "MFC Weak Scaling" \</div> |
| 264 | +<div class="line"> --case-optimization -j 32</div> |
| 265 | +</div><!-- fragment --> </div></div><!-- contents --> |
266 | 266 | </div><!-- PageDoc -->
|
267 | 267 | </div><!-- doc-content -->
|
268 | 268 | <!-- HTML footer for doxygen 1.9.1-->
|
|
0 commit comments