Skip to content

Commit d14fd8d

Browse files
author
MFC Action
committed
Docs @ 7f38fbf
1 parent 47c50a1 commit d14fd8d

21 files changed

+157
-157
lines changed

documentation/md_examples.html

Lines changed: 67 additions & 67 deletions
Original file line numberDiff line numberDiff line change
@@ -136,133 +136,133 @@
136136
<div class="contents">
137137
<div class="textblock"><p><a class="anchor" id="autotoc_md27"></a> </p>
138138
<h1><a class="anchor" id="autotoc_md28"></a>
139-
3D Weak Scaling</h1>
140-
<p>The <a href="case.py"><b>3D_weak_scaling</b></a> case depends on two parameters:</p>
141-
<ul>
142-
<li><b>The number of MPI ranks</b> (<em>procs</em>): As <em>procs</em> increases, the problem size per rank remains constant. <em>procs</em> is determined using information provided to the case file by <code>mfc.sh run</code>.</li>
143-
<li><b>GPU memory usage per rank</b> (<em>gbpp</em>): As <em>gbpp</em> increases, the problem size per rank increases and the number of timesteps decreases so that wall times consistent. <em>gbpp</em> is a user-defined optional argument to the <a href="case.py">case.py</a> file. It can be specified right after the case filepath when invoking <code>mfc.sh run</code>.</li>
144-
</ul>
145-
<p>Weak scaling benchmarks can be produced by keeping <em>gbpp</em> constant and varying <em>procs</em>.</p>
146-
<p>For example, to run a weak scaling test that uses ~4GB of GPU memory per rank on 8 2-rank nodes with case optimization, one could:</p>
147-
<div class="fragment"><div class="line">./mfc.sh run examples/3D_weak_scaling/case.py 4 -t pre_process simulation \</div>
148-
<div class="line"> -e batch -p mypartition -N 8 -n 2 -w &quot;01:00:00&quot; -# &quot;MFC Weak Scaling&quot; \</div>
149-
<div class="line"> --case-optimization -j 32</div>
150-
</div><!-- fragment --><h1><a class="anchor" id="autotoc_md29"></a>
151-
2D Riemann Test (2D)</h1>
152-
<p>Reference: Chamarthi, A., &amp; Hoffmann, N., &amp; Nishikawa, H., &amp; Frankel S. (2023). Implicit gradients based conservative numerical scheme for compressible flows. arXiv:2110.05461</p>
153-
<h2><a class="anchor" id="autotoc_md30"></a>
154-
Density Initial Condition</h2>
155-
<div class="image">
156-
<img src="alpha_rho1_initial-2D_riemann_test-example.png" alt=""/>
157-
<div class="caption">
158-
Density</div></div>
159-
<h2><a class="anchor" id="autotoc_md31"></a>
160-
Density Final Condition</h2>
161-
<div class="image">
162-
<img src="alpha_rho1_final-2D_riemann_test-example.png" alt=""/>
163-
<div class="caption">
164-
Density Norms</div></div>
165-
<h1><a class="anchor" id="autotoc_md32"></a>
166139
2D Hardcodied IC Example</h1>
167-
<h2><a class="anchor" id="autotoc_md33"></a>
140+
<h2><a class="anchor" id="autotoc_md29"></a>
168141
Initial Condition</h2>
169142
<div class="image">
170143
<img src="initial-2D_hardcodied_ic-example.png" alt=""/>
171144
<div class="caption">
172145
Initial Condition</div></div>
173-
<h2><a class="anchor" id="autotoc_md34"></a>
146+
<h2><a class="anchor" id="autotoc_md30"></a>
174147
Result</h2>
175148
<p><img src="result-2D_hardcodied_ic-example.png" alt="" class="inline" title="Result"/> </p>
176-
<h1><a class="anchor" id="autotoc_md35"></a>
177-
Shock Droplet (2D)</h1>
178-
<p>Reference: Panchal et. al., A Seven-Equation Diffused Interface Method for Resolved Multiphase Flows, JCP, 475 (2023)</p>
179-
<h2><a class="anchor" id="autotoc_md36"></a>
180-
Initial Condition</h2>
181-
<div class="image">
182-
<img src="initial-2D_shockdroplet-example.png" alt=""/>
183-
<div class="caption">
184-
Initial Condition</div></div>
185-
<h2><a class="anchor" id="autotoc_md37"></a>
186-
Result</h2>
187-
<p><img src="result-2D_shockdroplet-example.png" alt="" class="inline" title="Result"/> </p>
188-
<h1><a class="anchor" id="autotoc_md38"></a>
149+
<h1><a class="anchor" id="autotoc_md31"></a>
189150
Isentropic vortex problem (2D)</h1>
190151
<p>Reference: Coralic, V., &amp; Colonius, T. (2014). Finite-volume Weno scheme for viscous compressible multicomponent flows. Journal of Computational Physics, 274, 95–121. <a href="https://doi.org/10.1016/j.jcp.2014.06.003">https://doi.org/10.1016/j.jcp.2014.06.003</a></p>
191-
<h2><a class="anchor" id="autotoc_md39"></a>
152+
<h2><a class="anchor" id="autotoc_md32"></a>
192153
Density</h2>
193154
<div class="image">
194155
<img src="alpha_rho1-2D_isentropicvortex-example.png" alt=""/>
195156
<div class="caption">
196157
Density</div></div>
197-
<h2><a class="anchor" id="autotoc_md40"></a>
158+
<h2><a class="anchor" id="autotoc_md33"></a>
198159
Density Norms</h2>
199160
<div class="image">
200161
<img src="density_norms-2D_isentropicvortex-example.png" alt=""/>
201162
<div class="caption">
202163
Density Norms</div></div>
203-
<h1><a class="anchor" id="autotoc_md41"></a>
164+
<h1><a class="anchor" id="autotoc_md34"></a>
204165
Titarev-Toro problem (1D)</h1>
205166
<p>Reference: V. A. Titarev, E. F. Toro, Finite-volume WENO schemes for three-dimensional conservation laws, Journal of Computational Physics 201 (1) (2004) 238–260.</p>
206-
<h2><a class="anchor" id="autotoc_md42"></a>
167+
<h2><a class="anchor" id="autotoc_md35"></a>
207168
Initial Condition</h2>
208169
<div class="image">
209170
<img src="initial-1D_titarevtorro-example.png" alt=""/>
210171
<div class="caption">
211172
Initial Condition</div></div>
212-
<h2><a class="anchor" id="autotoc_md43"></a>
173+
<h2><a class="anchor" id="autotoc_md36"></a>
213174
Result</h2>
214175
<div class="image">
215176
<img src="result-1D_titarevtorro-example.png" alt=""/>
216177
<div class="caption">
217178
Result</div></div>
218-
<h1><a class="anchor" id="autotoc_md44"></a>
179+
<h1><a class="anchor" id="autotoc_md37"></a>
219180
Lax shock tube problem (1D)</h1>
220181
<p>Reference: P. D. Lax, Weak solutions of nonlinear hyperbolic equations and their numerical computation, Communications on pure and applied mathematics 7 (1) (1954) 159–193.</p>
221-
<h2><a class="anchor" id="autotoc_md45"></a>
182+
<h2><a class="anchor" id="autotoc_md38"></a>
222183
Initial Condition</h2>
223184
<div class="image">
224185
<img src="initial-1D_laxshocktube-example.png" alt=""/>
225186
<div class="caption">
226187
Initial Condition</div></div>
227-
<h2><a class="anchor" id="autotoc_md46"></a>
188+
<h2><a class="anchor" id="autotoc_md39"></a>
228189
Result</h2>
229190
<div class="image">
230191
<img src="result-1D_laxshocktube-example.png" alt=""/>
231192
<div class="caption">
232193
Result</div></div>
233-
<h1><a class="anchor" id="autotoc_md47"></a>
234-
Lid-Driven Cavity Problem (2D)</h1>
235-
<p>Reference: Bezgin, D. A., &amp; Buhendwa A. B., &amp; Adams N. A. (2022). JAX-FLUIDS: A fully-differentiable high-order computational fluid dynamics solver for compressible two-phase flows. arXiv:2203.13760</p>
236-
<p>Reference: Ghia, U., &amp; Ghia, K. N., &amp; Shin, C. T. (1982). High-re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. Journal of Computational Physics, 48, 387-411</p>
237-
<p>Video: <a href="https://youtube.com/shorts/JEP28scZrBM?feature=share">https://youtube.com/shorts/JEP28scZrBM?feature=share</a></p>
238-
<h2><a class="anchor" id="autotoc_md48"></a>
239-
Final Condition</h2>
194+
<h1><a class="anchor" id="autotoc_md40"></a>
195+
Shock Droplet (2D)</h1>
196+
<p>Reference: Panchal et. al., A Seven-Equation Diffused Interface Method for Resolved Multiphase Flows, JCP, 475 (2023)</p>
197+
<h2><a class="anchor" id="autotoc_md41"></a>
198+
Initial Condition</h2>
240199
<div class="image">
241-
<img src="final_condition-2D_lid_driven_cavity-example.png" alt=""/>
200+
<img src="initial-2D_shockdroplet-example.png" alt=""/>
242201
<div class="caption">
243-
Final Condition</div></div>
244-
<h2><a class="anchor" id="autotoc_md49"></a>
245-
Centerline Velocities</h2>
202+
Initial Condition</div></div>
203+
<h2><a class="anchor" id="autotoc_md42"></a>
204+
Result</h2>
205+
<p><img src="result-2D_shockdroplet-example.png" alt="" class="inline" title="Result"/> </p>
206+
<h1><a class="anchor" id="autotoc_md43"></a>
207+
2D Riemann Test (2D)</h1>
208+
<p>Reference: Chamarthi, A., &amp; Hoffmann, N., &amp; Nishikawa, H., &amp; Frankel S. (2023). Implicit gradients based conservative numerical scheme for compressible flows. arXiv:2110.05461</p>
209+
<h2><a class="anchor" id="autotoc_md44"></a>
210+
Density Initial Condition</h2>
246211
<div class="image">
247-
<img src="centerline_velocities-2D_lid_driven_cavity-example.png" alt=""/>
212+
<img src="alpha_rho1_initial-2D_riemann_test-example.png" alt=""/>
248213
<div class="caption">
249-
Centerline Velocities</div></div>
250-
<h1><a class="anchor" id="autotoc_md50"></a>
214+
Density</div></div>
215+
<h2><a class="anchor" id="autotoc_md45"></a>
216+
Density Final Condition</h2>
217+
<div class="image">
218+
<img src="alpha_rho1_final-2D_riemann_test-example.png" alt=""/>
219+
<div class="caption">
220+
Density Norms</div></div>
221+
<h1><a class="anchor" id="autotoc_md46"></a>
251222
Shu-Osher problem (1D)</h1>
252223
<p>Reference: C. W. Shu, S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes, Journal of Computational Physics 77 (2) (1988) 439–471. doi:10.1016/0021-9991(88)90177-5.</p>
253-
<h2><a class="anchor" id="autotoc_md51"></a>
224+
<h2><a class="anchor" id="autotoc_md47"></a>
254225
Initial Condition</h2>
255226
<div class="image">
256227
<img src="initial-1D_shuosher-example.png" alt=""/>
257228
<div class="caption">
258229
Initial Condition</div></div>
259-
<h2><a class="anchor" id="autotoc_md52"></a>
230+
<h2><a class="anchor" id="autotoc_md48"></a>
260231
Result</h2>
261232
<div class="image">
262233
<img src="result-1D_shuosher-example.png" alt=""/>
263234
<div class="caption">
264235
Result</div></div>
265-
</div></div><!-- contents -->
236+
<h1><a class="anchor" id="autotoc_md49"></a>
237+
Lid-Driven Cavity Problem (2D)</h1>
238+
<p>Reference: Bezgin, D. A., &amp; Buhendwa A. B., &amp; Adams N. A. (2022). JAX-FLUIDS: A fully-differentiable high-order computational fluid dynamics solver for compressible two-phase flows. arXiv:2203.13760</p>
239+
<p>Reference: Ghia, U., &amp; Ghia, K. N., &amp; Shin, C. T. (1982). High-re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. Journal of Computational Physics, 48, 387-411</p>
240+
<p>Video: <a href="https://youtube.com/shorts/JEP28scZrBM?feature=share">https://youtube.com/shorts/JEP28scZrBM?feature=share</a></p>
241+
<h2><a class="anchor" id="autotoc_md50"></a>
242+
Final Condition</h2>
243+
<div class="image">
244+
<img src="final_condition-2D_lid_driven_cavity-example.png" alt=""/>
245+
<div class="caption">
246+
Final Condition</div></div>
247+
<h2><a class="anchor" id="autotoc_md51"></a>
248+
Centerline Velocities</h2>
249+
<div class="image">
250+
<img src="centerline_velocities-2D_lid_driven_cavity-example.png" alt=""/>
251+
<div class="caption">
252+
Centerline Velocities</div></div>
253+
<h1><a class="anchor" id="autotoc_md52"></a>
254+
3D Weak Scaling</h1>
255+
<p>The <a href="case.py"><b>3D_weak_scaling</b></a> case depends on two parameters:</p>
256+
<ul>
257+
<li><b>The number of MPI ranks</b> (<em>procs</em>): As <em>procs</em> increases, the problem size per rank remains constant. <em>procs</em> is determined using information provided to the case file by <code>mfc.sh run</code>.</li>
258+
<li><b>GPU memory usage per rank</b> (<em>gbpp</em>): As <em>gbpp</em> increases, the problem size per rank increases and the number of timesteps decreases so that wall times consistent. <em>gbpp</em> is a user-defined optional argument to the <a href="case.py">case.py</a> file. It can be specified right after the case filepath when invoking <code>mfc.sh run</code>.</li>
259+
</ul>
260+
<p>Weak scaling benchmarks can be produced by keeping <em>gbpp</em> constant and varying <em>procs</em>.</p>
261+
<p>For example, to run a weak scaling test that uses ~4GB of GPU memory per rank on 8 2-rank nodes with case optimization, one could:</p>
262+
<div class="fragment"><div class="line">./mfc.sh run examples/3D_weak_scaling/case.py 4 -t pre_process simulation \</div>
263+
<div class="line"> -e batch -p mypartition -N 8 -n 2 -w &quot;01:00:00&quot; -# &quot;MFC Weak Scaling&quot; \</div>
264+
<div class="line"> --case-optimization -j 32</div>
265+
</div><!-- fragment --> </div></div><!-- contents -->
266266
</div><!-- PageDoc -->
267267
</div><!-- doc-content -->
268268
<!-- HTML footer for doxygen 1.9.1-->

documentation/navtreedata.js

Lines changed: 26 additions & 26 deletions
Original file line numberDiff line numberDiff line change
@@ -59,39 +59,39 @@ var NAVTREE =
5959
] ]
6060
] ],
6161
[ "Example Cases", "md_examples.html", [
62-
[ "3D Weak Scaling", "md_examples.html#autotoc_md28", null ],
63-
[ "2D Riemann Test (2D)", "md_examples.html#autotoc_md29", [
64-
[ "Density Initial Condition", "md_examples.html#autotoc_md30", null ],
65-
[ "Density Final Condition", "md_examples.html#autotoc_md31", null ]
62+
[ "2D Hardcodied IC Example", "md_examples.html#autotoc_md28", [
63+
[ "Initial Condition", "md_examples.html#autotoc_md29", null ],
64+
[ "Result", "md_examples.html#autotoc_md30", null ]
6665
] ],
67-
[ "2D Hardcodied IC Example", "md_examples.html#autotoc_md32", [
68-
[ "Initial Condition", "md_examples.html#autotoc_md33", null ],
69-
[ "Result", "md_examples.html#autotoc_md34", null ]
66+
[ "Isentropic vortex problem (2D)", "md_examples.html#autotoc_md31", [
67+
[ "Density", "md_examples.html#autotoc_md32", null ],
68+
[ "Density Norms", "md_examples.html#autotoc_md33", null ]
7069
] ],
71-
[ "Shock Droplet (2D)", "md_examples.html#autotoc_md35", [
72-
[ "Initial Condition", "md_examples.html#autotoc_md36", null ],
73-
[ "Result", "md_examples.html#autotoc_md37", null ]
70+
[ "Titarev-Toro problem (1D)", "md_examples.html#autotoc_md34", [
71+
[ "Initial Condition", "md_examples.html#autotoc_md35", null ],
72+
[ "Result", "md_examples.html#autotoc_md36", null ]
7473
] ],
75-
[ "Isentropic vortex problem (2D)", "md_examples.html#autotoc_md38", [
76-
[ "Density", "md_examples.html#autotoc_md39", null ],
77-
[ "Density Norms", "md_examples.html#autotoc_md40", null ]
74+
[ "Lax shock tube problem (1D)", "md_examples.html#autotoc_md37", [
75+
[ "Initial Condition", "md_examples.html#autotoc_md38", null ],
76+
[ "Result", "md_examples.html#autotoc_md39", null ]
7877
] ],
79-
[ "Titarev-Toro problem (1D)", "md_examples.html#autotoc_md41", [
80-
[ "Initial Condition", "md_examples.html#autotoc_md42", null ],
81-
[ "Result", "md_examples.html#autotoc_md43", null ]
78+
[ "Shock Droplet (2D)", "md_examples.html#autotoc_md40", [
79+
[ "Initial Condition", "md_examples.html#autotoc_md41", null ],
80+
[ "Result", "md_examples.html#autotoc_md42", null ]
8281
] ],
83-
[ "Lax shock tube problem (1D)", "md_examples.html#autotoc_md44", [
84-
[ "Initial Condition", "md_examples.html#autotoc_md45", null ],
85-
[ "Result", "md_examples.html#autotoc_md46", null ]
82+
[ "2D Riemann Test (2D)", "md_examples.html#autotoc_md43", [
83+
[ "Density Initial Condition", "md_examples.html#autotoc_md44", null ],
84+
[ "Density Final Condition", "md_examples.html#autotoc_md45", null ]
8685
] ],
87-
[ "Lid-Driven Cavity Problem (2D)", "md_examples.html#autotoc_md47", [
88-
[ "Final Condition", "md_examples.html#autotoc_md48", null ],
89-
[ "Centerline Velocities", "md_examples.html#autotoc_md49", null ]
86+
[ "Shu-Osher problem (1D)", "md_examples.html#autotoc_md46", [
87+
[ "Initial Condition", "md_examples.html#autotoc_md47", null ],
88+
[ "Result", "md_examples.html#autotoc_md48", null ]
9089
] ],
91-
[ "Shu-Osher problem (1D)", "md_examples.html#autotoc_md50", [
92-
[ "Initial Condition", "md_examples.html#autotoc_md51", null ],
93-
[ "Result", "md_examples.html#autotoc_md52", null ]
94-
] ]
90+
[ "Lid-Driven Cavity Problem (2D)", "md_examples.html#autotoc_md49", [
91+
[ "Final Condition", "md_examples.html#autotoc_md50", null ],
92+
[ "Centerline Velocities", "md_examples.html#autotoc_md51", null ]
93+
] ],
94+
[ "3D Weak Scaling", "md_examples.html#autotoc_md52", null ]
9595
] ],
9696
[ "Performance Results", "md_expectedPerformance.html", [
9797
[ "Expected time-steps/hour", "md_expectedPerformance.html#autotoc_md54", null ],

documentation/navtreeindex0.js

Lines changed: 24 additions & 24 deletions
Original file line numberDiff line numberDiff line change
@@ -33,30 +33,30 @@ var NAVTREEINDEX0 =
3333
"md_case.html#autotoc_md9":[2,2,2,1],
3434
"md_examples.html":[3],
3535
"md_examples.html#autotoc_md28":[3,0],
36-
"md_examples.html#autotoc_md29":[3,1],
37-
"md_examples.html#autotoc_md30":[3,1,0],
38-
"md_examples.html#autotoc_md31":[3,1,1],
39-
"md_examples.html#autotoc_md32":[3,2],
40-
"md_examples.html#autotoc_md33":[3,2,0],
41-
"md_examples.html#autotoc_md34":[3,2,1],
42-
"md_examples.html#autotoc_md35":[3,3],
43-
"md_examples.html#autotoc_md36":[3,3,0],
44-
"md_examples.html#autotoc_md37":[3,3,1],
45-
"md_examples.html#autotoc_md38":[3,4],
46-
"md_examples.html#autotoc_md39":[3,4,0],
47-
"md_examples.html#autotoc_md40":[3,4,1],
48-
"md_examples.html#autotoc_md41":[3,5],
49-
"md_examples.html#autotoc_md42":[3,5,0],
50-
"md_examples.html#autotoc_md43":[3,5,1],
51-
"md_examples.html#autotoc_md44":[3,6],
52-
"md_examples.html#autotoc_md45":[3,6,0],
53-
"md_examples.html#autotoc_md46":[3,6,1],
54-
"md_examples.html#autotoc_md47":[3,7],
55-
"md_examples.html#autotoc_md48":[3,7,0],
56-
"md_examples.html#autotoc_md49":[3,7,1],
57-
"md_examples.html#autotoc_md50":[3,8],
58-
"md_examples.html#autotoc_md51":[3,8,0],
59-
"md_examples.html#autotoc_md52":[3,8,1],
36+
"md_examples.html#autotoc_md29":[3,0,0],
37+
"md_examples.html#autotoc_md30":[3,0,1],
38+
"md_examples.html#autotoc_md31":[3,1],
39+
"md_examples.html#autotoc_md32":[3,1,0],
40+
"md_examples.html#autotoc_md33":[3,1,1],
41+
"md_examples.html#autotoc_md34":[3,2],
42+
"md_examples.html#autotoc_md35":[3,2,0],
43+
"md_examples.html#autotoc_md36":[3,2,1],
44+
"md_examples.html#autotoc_md37":[3,3],
45+
"md_examples.html#autotoc_md38":[3,3,0],
46+
"md_examples.html#autotoc_md39":[3,3,1],
47+
"md_examples.html#autotoc_md40":[3,4],
48+
"md_examples.html#autotoc_md41":[3,4,0],
49+
"md_examples.html#autotoc_md42":[3,4,1],
50+
"md_examples.html#autotoc_md43":[3,5],
51+
"md_examples.html#autotoc_md44":[3,5,0],
52+
"md_examples.html#autotoc_md45":[3,5,1],
53+
"md_examples.html#autotoc_md46":[3,6],
54+
"md_examples.html#autotoc_md47":[3,6,0],
55+
"md_examples.html#autotoc_md48":[3,6,1],
56+
"md_examples.html#autotoc_md49":[3,7],
57+
"md_examples.html#autotoc_md50":[3,7,0],
58+
"md_examples.html#autotoc_md51":[3,7,1],
59+
"md_examples.html#autotoc_md52":[3,8],
6060
"md_expectedPerformance.html":[4],
6161
"md_expectedPerformance.html#autotoc_md54":[4,0],
6262
"md_expectedPerformance.html#autotoc_md55":[4,1],

documentation/search/all_0.js

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -4,5 +4,5 @@ var searchData=
44
['10_20velocity_20field_20setup_1',['10. Velocity Field Setup',['../md_case.html#autotoc_md18',1,'']]],
55
['11_20phase_20change_20model_2',['11. Phase Change Model',['../md_case.html#autotoc_md19',1,'']]],
66
['16m_20grid_20points_3',['16M Grid Points',['../md_expectedPerformance.html#autotoc_md61',1,'']]],
7-
['1d_4',['1D',['../md_examples.html#autotoc_md44',1,'Lax shock tube problem (1D)'],['../md_examples.html#autotoc_md50',1,'Shu-Osher problem (1D)'],['../md_examples.html#autotoc_md41',1,'Titarev-Toro problem (1D)']]]
7+
['1d_4',['1D',['../md_examples.html#autotoc_md37',1,'Lax shock tube problem (1D)'],['../md_examples.html#autotoc_md46',1,'Shu-Osher problem (1D)'],['../md_examples.html#autotoc_md34',1,'Titarev-Toro problem (1D)']]]
88
];

documentation/search/all_1.js

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11
var searchData=
22
[
33
['2_20computational_20domain_0',['2. Computational Domain',['../md_case.html#autotoc_md6',1,'']]],
4-
['2d_1',['2D',['../md_examples.html#autotoc_md29',1,'2D Riemann Test (2D)'],['../md_examples.html#autotoc_md38',1,'Isentropic vortex problem (2D)'],['../md_examples.html#autotoc_md47',1,'Lid-Driven Cavity Problem (2D)'],['../md_examples.html#autotoc_md35',1,'Shock Droplet (2D)']]],
5-
['2d_20hardcodied_20ic_20example_2',['2D Hardcodied IC Example',['../md_examples.html#autotoc_md32',1,'']]],
6-
['2d_20riemann_20test_202d_3',['2D Riemann Test (2D)',['../md_examples.html#autotoc_md29',1,'']]]
4+
['2d_1',['2D',['../md_examples.html#autotoc_md43',1,'2D Riemann Test (2D)'],['../md_examples.html#autotoc_md31',1,'Isentropic vortex problem (2D)'],['../md_examples.html#autotoc_md49',1,'Lid-Driven Cavity Problem (2D)'],['../md_examples.html#autotoc_md40',1,'Shock Droplet (2D)']]],
5+
['2d_20hardcodied_20ic_20example_2',['2D Hardcodied IC Example',['../md_examples.html#autotoc_md28',1,'']]],
6+
['2d_20riemann_20test_202d_3',['2D Riemann Test (2D)',['../md_examples.html#autotoc_md43',1,'']]]
77
];

documentation/search/all_10.js

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,6 @@
11
var searchData=
22
[
33
['hard_20coded_20patches_0',['Hard Coded Patches',['../md_case.html#autotoc_md9',1,'']]],
4-
['hardcodied_20ic_20example_1',['2D Hardcodied IC Example',['../md_examples.html#autotoc_md32',1,'']]],
4+
['hardcodied_20ic_20example_1',['2D Hardcodied IC Example',['../md_examples.html#autotoc_md28',1,'']]],
55
['hour_2',['Expected time-steps/hour',['../md_expectedPerformance.html#autotoc_md54',1,'']]]
66
];

0 commit comments

Comments
 (0)