Skip to content

Commit e8fec8d

Browse files
author
MFC Action
committed
Docs @ d026708
1 parent cbc92ef commit e8fec8d

20 files changed

+126
-126
lines changed

documentation/md_case.html

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -245,7 +245,7 @@ <h2><a class="anchor" id="autotoc_md6"></a>
245245
<ul>
246246
<li><code>cyl_coord</code> activates cylindrical coordinates. The domain is defined in $x$-$y$-$z$ cylindrical coordinates, instead of Cartesian coordinates. Domain discretization is accordingly conducted along the axes of cylindrical coordinates. When $p=0$, the domain is defined on $x$-$y$ axi-symmetric coordinates. In both Coordinates, mesh stretching can be defined along the $x$- and $y$-axes. MPI topology is automatically optimized to maximize the parallel efficiency for given choice of coordinate systems.</li>
247247
<li><code>dt</code> specifies the constant time step size that is used in simulation. The value of <code>dt</code> needs to be sufficiently small such that the Courant-Friedrichs-Lewy (CFL) condition is satisfied.</li>
248-
<li><code>t_step_start</code> and <code>t_step_end</code> define the time steps at which simulation starts and ends, respectively. <code>t_step_save</code> is the time step interval for data output during simulation. To newly start simulation, set <code>t_step_start</code>=0. To restart simulation from $k$-th time step, set <code>t_step_start</code>=k.</li>
248+
<li><code>t_step_start</code> and <code>t_step_end</code> define the time steps at which simulation starts and ends, respectively. <code>t_step_save</code> is the time step interval for data output during simulation. To newly start the simulation, set <code>t_step_start = 0</code>. To restart simulation from $k$-th time step, set <code>t_step_start = k</code>, do not run <code>pre_process</code>, and run <code>simulation</code> directly (<code>./mfc.sh run [...] -t simulation</code>). Ensure the data for the $k$-th time step is stored in the <code>restart_data/</code> directory within the case repository.</li>
249249
</ul>
250250
<h2><a class="anchor" id="autotoc_md7"></a>
251251
3. Patches</h2>

documentation/md_examples.html

Lines changed: 62 additions & 62 deletions
Original file line numberDiff line numberDiff line change
@@ -147,33 +147,33 @@ <h2><a class="anchor" id="autotoc_md30"></a>
147147
Result</h2>
148148
<p><img src="result-2D_hardcodied_ic-example.png" alt="" class="inline" title="Result"/> </p>
149149
<h1><a class="anchor" id="autotoc_md31"></a>
150-
Titarev-Toro problem (1D)</h1>
151-
<p>Reference: V. A. Titarev, E. F. Toro, Finite-volume WENO schemes for three-dimensional conservation laws, Journal of Computational Physics 201 (1) (2004) 238–260.</p>
150+
Isentropic vortex problem (2D)</h1>
151+
<p>Reference: Coralic, V., &amp; Colonius, T. (2014). Finite-volume Weno scheme for viscous compressible multicomponent flows. Journal of Computational Physics, 274, 95–121. <a href="https://doi.org/10.1016/j.jcp.2014.06.003">https://doi.org/10.1016/j.jcp.2014.06.003</a></p>
152152
<h2><a class="anchor" id="autotoc_md32"></a>
153-
Initial Condition</h2>
153+
Density</h2>
154154
<div class="image">
155-
<img src="initial-1D_titarevtorro-example.png" alt=""/>
155+
<img src="alpha_rho1-2D_isentropicvortex-example.png" alt=""/>
156156
<div class="caption">
157-
Initial Condition</div></div>
157+
Density</div></div>
158158
<h2><a class="anchor" id="autotoc_md33"></a>
159-
Result</h2>
159+
Density Norms</h2>
160160
<div class="image">
161-
<img src="result-1D_titarevtorro-example.png" alt=""/>
161+
<img src="density_norms-2D_isentropicvortex-example.png" alt=""/>
162162
<div class="caption">
163-
Result</div></div>
163+
Density Norms</div></div>
164164
<h1><a class="anchor" id="autotoc_md34"></a>
165-
Shu-Osher problem (1D)</h1>
166-
<p>Reference: C. W. Shu, S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes, Journal of Computational Physics 77 (2) (1988) 439–471. doi:10.1016/0021-9991(88)90177-5.</p>
165+
Titarev-Toro problem (1D)</h1>
166+
<p>Reference: V. A. Titarev, E. F. Toro, Finite-volume WENO schemes for three-dimensional conservation laws, Journal of Computational Physics 201 (1) (2004) 238–260.</p>
167167
<h2><a class="anchor" id="autotoc_md35"></a>
168168
Initial Condition</h2>
169169
<div class="image">
170-
<img src="initial-1D_shuosher-example.png" alt=""/>
170+
<img src="initial-1D_titarevtorro-example.png" alt=""/>
171171
<div class="caption">
172172
Initial Condition</div></div>
173173
<h2><a class="anchor" id="autotoc_md36"></a>
174174
Result</h2>
175175
<div class="image">
176-
<img src="result-1D_shuosher-example.png" alt=""/>
176+
<img src="result-1D_titarevtorro-example.png" alt=""/>
177177
<div class="caption">
178178
Result</div></div>
179179
<h1><a class="anchor" id="autotoc_md37"></a>
@@ -192,77 +192,77 @@ <h2><a class="anchor" id="autotoc_md39"></a>
192192
<div class="caption">
193193
Result</div></div>
194194
<h1><a class="anchor" id="autotoc_md40"></a>
195-
3D Weak Scaling</h1>
196-
<p>The <a href="case.py"><b>3D_weak_scaling</b></a> case depends on two parameters:</p>
197-
<ul>
198-
<li><b>The number of MPI ranks</b> (<em>procs</em>): As <em>procs</em> increases, the problem size per rank remains constant. <em>procs</em> is determined using information provided to the case file by <code>mfc.sh run</code>.</li>
199-
<li><b>GPU memory usage per rank</b> (<em>gbpp</em>): As <em>gbpp</em> increases, the problem size per rank increases and the number of timesteps decreases so that wall times consistent. <em>gbpp</em> is a user-defined optional argument to the <a href="case.py">case.py</a> file. It can be specified right after the case filepath when invoking <code>mfc.sh run</code>.</li>
200-
</ul>
201-
<p>Weak scaling benchmarks can be produced by keeping <em>gbpp</em> constant and varying <em>procs</em>.</p>
202-
<p>For example, to run a weak scaling test that uses ~4GB of GPU memory per rank on 8 2-rank nodes with case optimization, one could:</p>
203-
<div class="fragment"><div class="line">./mfc.sh run examples/3D_weak_scaling/case.py 4 -t pre_process simulation \</div>
204-
<div class="line"> -e batch -p mypartition -N 8 -n 2 -w &quot;01:00:00&quot; -# &quot;MFC Weak Scaling&quot; \</div>
205-
<div class="line"> --case-optimization -j 32</div>
206-
</div><!-- fragment --><h1><a class="anchor" id="autotoc_md41"></a>
207-
Lid-Driven Cavity Problem (2D)</h1>
208-
<p>Reference: Bezgin, D. A., &amp; Buhendwa A. B., &amp; Adams N. A. (2022). JAX-FLUIDS: A fully-differentiable high-order computational fluid dynamics solver for compressible two-phase flows. arXiv:2203.13760</p>
209-
<p>Reference: Ghia, U., &amp; Ghia, K. N., &amp; Shin, C. T. (1982). High-re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. Journal of Computational Physics, 48, 387-411</p>
210-
<p>Video: <a href="https://youtube.com/shorts/JEP28scZrBM?feature=share">https://youtube.com/shorts/JEP28scZrBM?feature=share</a></p>
211-
<h2><a class="anchor" id="autotoc_md42"></a>
212-
Final Condition</h2>
213-
<div class="image">
214-
<img src="final_condition-2D_lid_driven_cavity-example.png" alt=""/>
215-
<div class="caption">
216-
Final Condition</div></div>
217-
<h2><a class="anchor" id="autotoc_md43"></a>
218-
Centerline Velocities</h2>
219-
<div class="image">
220-
<img src="centerline_velocities-2D_lid_driven_cavity-example.png" alt=""/>
221-
<div class="caption">
222-
Centerline Velocities</div></div>
223-
<h1><a class="anchor" id="autotoc_md44"></a>
224195
Shock Droplet (2D)</h1>
225196
<p>Reference: Panchal et. al., A Seven-Equation Diffused Interface Method for Resolved Multiphase Flows, JCP, 475 (2023)</p>
226-
<h2><a class="anchor" id="autotoc_md45"></a>
197+
<h2><a class="anchor" id="autotoc_md41"></a>
227198
Initial Condition</h2>
228199
<div class="image">
229200
<img src="initial-2D_shockdroplet-example.png" alt=""/>
230201
<div class="caption">
231202
Initial Condition</div></div>
232-
<h2><a class="anchor" id="autotoc_md46"></a>
203+
<h2><a class="anchor" id="autotoc_md42"></a>
233204
Result</h2>
234205
<p><img src="result-2D_shockdroplet-example.png" alt="" class="inline" title="Result"/> </p>
235-
<h1><a class="anchor" id="autotoc_md47"></a>
236-
Isentropic vortex problem (2D)</h1>
237-
<p>Reference: Coralic, V., &amp; Colonius, T. (2014). Finite-volume Weno scheme for viscous compressible multicomponent flows. Journal of Computational Physics, 274, 95–121. <a href="https://doi.org/10.1016/j.jcp.2014.06.003">https://doi.org/10.1016/j.jcp.2014.06.003</a></p>
238-
<h2><a class="anchor" id="autotoc_md48"></a>
239-
Density</h2>
240-
<div class="image">
241-
<img src="alpha_rho1-2D_isentropicvortex-example.png" alt=""/>
242-
<div class="caption">
243-
Density</div></div>
244-
<h2><a class="anchor" id="autotoc_md49"></a>
245-
Density Norms</h2>
246-
<div class="image">
247-
<img src="density_norms-2D_isentropicvortex-example.png" alt=""/>
248-
<div class="caption">
249-
Density Norms</div></div>
250-
<h1><a class="anchor" id="autotoc_md50"></a>
206+
<h1><a class="anchor" id="autotoc_md43"></a>
251207
2D Riemann Test (2D)</h1>
252208
<p>Reference: Chamarthi, A., &amp; Hoffmann, N., &amp; Nishikawa, H., &amp; Frankel S. (2023). Implicit gradients based conservative numerical scheme for compressible flows. arXiv:2110.05461</p>
253-
<h2><a class="anchor" id="autotoc_md51"></a>
209+
<h2><a class="anchor" id="autotoc_md44"></a>
254210
Density Initial Condition</h2>
255211
<div class="image">
256212
<img src="alpha_rho1_initial-2D_riemann_test-example.png" alt=""/>
257213
<div class="caption">
258214
Density</div></div>
259-
<h2><a class="anchor" id="autotoc_md52"></a>
215+
<h2><a class="anchor" id="autotoc_md45"></a>
260216
Density Final Condition</h2>
261217
<div class="image">
262218
<img src="alpha_rho1_final-2D_riemann_test-example.png" alt=""/>
263219
<div class="caption">
264220
Density Norms</div></div>
265-
</div></div><!-- contents -->
221+
<h1><a class="anchor" id="autotoc_md46"></a>
222+
Shu-Osher problem (1D)</h1>
223+
<p>Reference: C. W. Shu, S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes, Journal of Computational Physics 77 (2) (1988) 439–471. doi:10.1016/0021-9991(88)90177-5.</p>
224+
<h2><a class="anchor" id="autotoc_md47"></a>
225+
Initial Condition</h2>
226+
<div class="image">
227+
<img src="initial-1D_shuosher-example.png" alt=""/>
228+
<div class="caption">
229+
Initial Condition</div></div>
230+
<h2><a class="anchor" id="autotoc_md48"></a>
231+
Result</h2>
232+
<div class="image">
233+
<img src="result-1D_shuosher-example.png" alt=""/>
234+
<div class="caption">
235+
Result</div></div>
236+
<h1><a class="anchor" id="autotoc_md49"></a>
237+
Lid-Driven Cavity Problem (2D)</h1>
238+
<p>Reference: Bezgin, D. A., &amp; Buhendwa A. B., &amp; Adams N. A. (2022). JAX-FLUIDS: A fully-differentiable high-order computational fluid dynamics solver for compressible two-phase flows. arXiv:2203.13760</p>
239+
<p>Reference: Ghia, U., &amp; Ghia, K. N., &amp; Shin, C. T. (1982). High-re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. Journal of Computational Physics, 48, 387-411</p>
240+
<p>Video: <a href="https://youtube.com/shorts/JEP28scZrBM?feature=share">https://youtube.com/shorts/JEP28scZrBM?feature=share</a></p>
241+
<h2><a class="anchor" id="autotoc_md50"></a>
242+
Final Condition</h2>
243+
<div class="image">
244+
<img src="final_condition-2D_lid_driven_cavity-example.png" alt=""/>
245+
<div class="caption">
246+
Final Condition</div></div>
247+
<h2><a class="anchor" id="autotoc_md51"></a>
248+
Centerline Velocities</h2>
249+
<div class="image">
250+
<img src="centerline_velocities-2D_lid_driven_cavity-example.png" alt=""/>
251+
<div class="caption">
252+
Centerline Velocities</div></div>
253+
<h1><a class="anchor" id="autotoc_md52"></a>
254+
3D Weak Scaling</h1>
255+
<p>The <a href="case.py"><b>3D_weak_scaling</b></a> case depends on two parameters:</p>
256+
<ul>
257+
<li><b>The number of MPI ranks</b> (<em>procs</em>): As <em>procs</em> increases, the problem size per rank remains constant. <em>procs</em> is determined using information provided to the case file by <code>mfc.sh run</code>.</li>
258+
<li><b>GPU memory usage per rank</b> (<em>gbpp</em>): As <em>gbpp</em> increases, the problem size per rank increases and the number of timesteps decreases so that wall times consistent. <em>gbpp</em> is a user-defined optional argument to the <a href="case.py">case.py</a> file. It can be specified right after the case filepath when invoking <code>mfc.sh run</code>.</li>
259+
</ul>
260+
<p>Weak scaling benchmarks can be produced by keeping <em>gbpp</em> constant and varying <em>procs</em>.</p>
261+
<p>For example, to run a weak scaling test that uses ~4GB of GPU memory per rank on 8 2-rank nodes with case optimization, one could:</p>
262+
<div class="fragment"><div class="line">./mfc.sh run examples/3D_weak_scaling/case.py 4 -t pre_process simulation \</div>
263+
<div class="line"> -e batch -p mypartition -N 8 -n 2 -w &quot;01:00:00&quot; -# &quot;MFC Weak Scaling&quot; \</div>
264+
<div class="line"> --case-optimization -j 32</div>
265+
</div><!-- fragment --> </div></div><!-- contents -->
266266
</div><!-- PageDoc -->
267267
</div><!-- doc-content -->
268268
<!-- HTML footer for doxygen 1.9.1-->

documentation/navtreedata.js

Lines changed: 18 additions & 18 deletions
Original file line numberDiff line numberDiff line change
@@ -63,35 +63,35 @@ var NAVTREE =
6363
[ "Initial Condition", "md_examples.html#autotoc_md29", null ],
6464
[ "Result", "md_examples.html#autotoc_md30", null ]
6565
] ],
66-
[ "Titarev-Toro problem (1D)", "md_examples.html#autotoc_md31", [
67-
[ "Initial Condition", "md_examples.html#autotoc_md32", null ],
68-
[ "Result", "md_examples.html#autotoc_md33", null ]
66+
[ "Isentropic vortex problem (2D)", "md_examples.html#autotoc_md31", [
67+
[ "Density", "md_examples.html#autotoc_md32", null ],
68+
[ "Density Norms", "md_examples.html#autotoc_md33", null ]
6969
] ],
70-
[ "Shu-Osher problem (1D)", "md_examples.html#autotoc_md34", [
70+
[ "Titarev-Toro problem (1D)", "md_examples.html#autotoc_md34", [
7171
[ "Initial Condition", "md_examples.html#autotoc_md35", null ],
7272
[ "Result", "md_examples.html#autotoc_md36", null ]
7373
] ],
7474
[ "Lax shock tube problem (1D)", "md_examples.html#autotoc_md37", [
7575
[ "Initial Condition", "md_examples.html#autotoc_md38", null ],
7676
[ "Result", "md_examples.html#autotoc_md39", null ]
7777
] ],
78-
[ "3D Weak Scaling", "md_examples.html#autotoc_md40", null ],
79-
[ "Lid-Driven Cavity Problem (2D)", "md_examples.html#autotoc_md41", [
80-
[ "Final Condition", "md_examples.html#autotoc_md42", null ],
81-
[ "Centerline Velocities", "md_examples.html#autotoc_md43", null ]
78+
[ "Shock Droplet (2D)", "md_examples.html#autotoc_md40", [
79+
[ "Initial Condition", "md_examples.html#autotoc_md41", null ],
80+
[ "Result", "md_examples.html#autotoc_md42", null ]
8281
] ],
83-
[ "Shock Droplet (2D)", "md_examples.html#autotoc_md44", [
84-
[ "Initial Condition", "md_examples.html#autotoc_md45", null ],
85-
[ "Result", "md_examples.html#autotoc_md46", null ]
82+
[ "2D Riemann Test (2D)", "md_examples.html#autotoc_md43", [
83+
[ "Density Initial Condition", "md_examples.html#autotoc_md44", null ],
84+
[ "Density Final Condition", "md_examples.html#autotoc_md45", null ]
8685
] ],
87-
[ "Isentropic vortex problem (2D)", "md_examples.html#autotoc_md47", [
88-
[ "Density", "md_examples.html#autotoc_md48", null ],
89-
[ "Density Norms", "md_examples.html#autotoc_md49", null ]
86+
[ "Shu-Osher problem (1D)", "md_examples.html#autotoc_md46", [
87+
[ "Initial Condition", "md_examples.html#autotoc_md47", null ],
88+
[ "Result", "md_examples.html#autotoc_md48", null ]
9089
] ],
91-
[ "2D Riemann Test (2D)", "md_examples.html#autotoc_md50", [
92-
[ "Density Initial Condition", "md_examples.html#autotoc_md51", null ],
93-
[ "Density Final Condition", "md_examples.html#autotoc_md52", null ]
94-
] ]
90+
[ "Lid-Driven Cavity Problem (2D)", "md_examples.html#autotoc_md49", [
91+
[ "Final Condition", "md_examples.html#autotoc_md50", null ],
92+
[ "Centerline Velocities", "md_examples.html#autotoc_md51", null ]
93+
] ],
94+
[ "3D Weak Scaling", "md_examples.html#autotoc_md52", null ]
9595
] ],
9696
[ "Performance Results", "md_expectedPerformance.html", [
9797
[ "Expected time-steps/hour", "md_expectedPerformance.html#autotoc_md54", null ],

documentation/navtreeindex0.js

Lines changed: 12 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -45,18 +45,18 @@ var NAVTREEINDEX0 =
4545
"md_examples.html#autotoc_md38":[3,3,0],
4646
"md_examples.html#autotoc_md39":[3,3,1],
4747
"md_examples.html#autotoc_md40":[3,4],
48-
"md_examples.html#autotoc_md41":[3,5],
49-
"md_examples.html#autotoc_md42":[3,5,0],
50-
"md_examples.html#autotoc_md43":[3,5,1],
51-
"md_examples.html#autotoc_md44":[3,6],
52-
"md_examples.html#autotoc_md45":[3,6,0],
53-
"md_examples.html#autotoc_md46":[3,6,1],
54-
"md_examples.html#autotoc_md47":[3,7],
55-
"md_examples.html#autotoc_md48":[3,7,0],
56-
"md_examples.html#autotoc_md49":[3,7,1],
57-
"md_examples.html#autotoc_md50":[3,8],
58-
"md_examples.html#autotoc_md51":[3,8,0],
59-
"md_examples.html#autotoc_md52":[3,8,1],
48+
"md_examples.html#autotoc_md41":[3,4,0],
49+
"md_examples.html#autotoc_md42":[3,4,1],
50+
"md_examples.html#autotoc_md43":[3,5],
51+
"md_examples.html#autotoc_md44":[3,5,0],
52+
"md_examples.html#autotoc_md45":[3,5,1],
53+
"md_examples.html#autotoc_md46":[3,6],
54+
"md_examples.html#autotoc_md47":[3,6,0],
55+
"md_examples.html#autotoc_md48":[3,6,1],
56+
"md_examples.html#autotoc_md49":[3,7],
57+
"md_examples.html#autotoc_md50":[3,7,0],
58+
"md_examples.html#autotoc_md51":[3,7,1],
59+
"md_examples.html#autotoc_md52":[3,8],
6060
"md_expectedPerformance.html":[4],
6161
"md_expectedPerformance.html#autotoc_md54":[4,0],
6262
"md_expectedPerformance.html#autotoc_md55":[4,1],

documentation/search/all_0.js

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -4,5 +4,5 @@ var searchData=
44
['10_20velocity_20field_20setup_1',['10. Velocity Field Setup',['../md_case.html#autotoc_md18',1,'']]],
55
['11_20phase_20change_20model_2',['11. Phase Change Model',['../md_case.html#autotoc_md19',1,'']]],
66
['16m_20grid_20points_3',['16M Grid Points',['../md_expectedPerformance.html#autotoc_md61',1,'']]],
7-
['1d_4',['1D',['../md_examples.html#autotoc_md37',1,'Lax shock tube problem (1D)'],['../md_examples.html#autotoc_md34',1,'Shu-Osher problem (1D)'],['../md_examples.html#autotoc_md31',1,'Titarev-Toro problem (1D)']]]
7+
['1d_4',['1D',['../md_examples.html#autotoc_md37',1,'Lax shock tube problem (1D)'],['../md_examples.html#autotoc_md46',1,'Shu-Osher problem (1D)'],['../md_examples.html#autotoc_md34',1,'Titarev-Toro problem (1D)']]]
88
];

documentation/search/all_1.js

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11
var searchData=
22
[
33
['2_20computational_20domain_0',['2. Computational Domain',['../md_case.html#autotoc_md6',1,'']]],
4-
['2d_1',['2D',['../md_examples.html#autotoc_md50',1,'2D Riemann Test (2D)'],['../md_examples.html#autotoc_md47',1,'Isentropic vortex problem (2D)'],['../md_examples.html#autotoc_md41',1,'Lid-Driven Cavity Problem (2D)'],['../md_examples.html#autotoc_md44',1,'Shock Droplet (2D)']]],
4+
['2d_1',['2D',['../md_examples.html#autotoc_md43',1,'2D Riemann Test (2D)'],['../md_examples.html#autotoc_md31',1,'Isentropic vortex problem (2D)'],['../md_examples.html#autotoc_md49',1,'Lid-Driven Cavity Problem (2D)'],['../md_examples.html#autotoc_md40',1,'Shock Droplet (2D)']]],
55
['2d_20hardcodied_20ic_20example_2',['2D Hardcodied IC Example',['../md_examples.html#autotoc_md28',1,'']]],
6-
['2d_20riemann_20test_202d_3',['2D Riemann Test (2D)',['../md_examples.html#autotoc_md50',1,'']]]
6+
['2d_20riemann_20test_202d_3',['2D Riemann Test (2D)',['../md_examples.html#autotoc_md43',1,'']]]
77
];

documentation/search/all_11.js

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@ var searchData=
44
['ic_20example_1',['2D Hardcodied IC Example',['../md_examples.html#autotoc_md28',1,'']]],
55
['immersed_20boundary_20patch_20types_2',['Immersed Boundary Patch Types',['../md_case.html#autotoc_md23',1,'']]],
66
['immersed_20boundary_20patches_3',['4. Immersed Boundary Patches',['../md_case.html#autotoc_md11',1,'']]],
7-
['initial_20condition_4',['Initial Condition',['../md_examples.html#autotoc_md51',1,'Density Initial Condition'],['../md_examples.html#autotoc_md29',1,'Initial Condition'],['../md_examples.html#autotoc_md32',1,'Initial Condition'],['../md_examples.html#autotoc_md35',1,'Initial Condition'],['../md_examples.html#autotoc_md38',1,'Initial Condition'],['../md_examples.html#autotoc_md45',1,'Initial Condition']]],
7+
['initial_20condition_4',['Initial Condition',['../md_examples.html#autotoc_md44',1,'Density Initial Condition'],['../md_examples.html#autotoc_md29',1,'Initial Condition'],['../md_examples.html#autotoc_md35',1,'Initial Condition'],['../md_examples.html#autotoc_md38',1,'Initial Condition'],['../md_examples.html#autotoc_md41',1,'Initial Condition'],['../md_examples.html#autotoc_md47',1,'Initial Condition']]],
88
['interactive_20execution_5',['Interactive Execution',['../md_running.html#autotoc_md75',1,'']]],
9-
['isentropic_20vortex_20problem_202d_6',['Isentropic vortex problem (2D)',['../md_examples.html#autotoc_md47',1,'']]]
9+
['isentropic_20vortex_20problem_202d_6',['Isentropic vortex problem (2D)',['../md_examples.html#autotoc_md31',1,'']]]
1010
];

0 commit comments

Comments
 (0)