Skip to content

Commit f9ae0a3

Browse files
committed
Working on Pandas
1 parent 3d7612c commit f9ae0a3

File tree

2 files changed

+32
-15
lines changed

2 files changed

+32
-15
lines changed

README.md

Lines changed: 16 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -3286,6 +3286,17 @@ b 3 4
32863286
### GroupBy
32873287
**Object that groups together rows of a dataframe based on the value of passed column.**
32883288

3289+
```python
3290+
>>> df = DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 6]], index=list('abc'), columns=list('xyz'))
3291+
>>> df.groupby('z').get_group(3)
3292+
x y
3293+
a 1 2
3294+
>>> df.groupby('z').get_group(6)
3295+
x y
3296+
b 4 5
3297+
c 7 8
3298+
```
3299+
32893300
```python
32903301
<GB> = <DF>.groupby(column_key/s) # DF is split into groups based on passed column.
32913302
<DF> = <GB>.get_group(group_key) # Selects a group by value of grouping column.
@@ -3299,7 +3310,6 @@ b 3 4
32993310
```
33003311

33013312
```python
3302-
>>> df = DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 6]], index=list('abc'), columns=list('xyz'))
33033313
>>> gb = df.groupby('z')
33043314
x y z
33053315
3: a 1 2 3
@@ -3325,12 +3335,12 @@ b 3 4
33253335
```
33263336

33273337
### Rolling
3338+
**Object for rolling window calculations.**
3339+
33283340
```python
3329-
<Rl_S/D/G> = <Sr/DF/GB>.rolling(window_size) # Also: `min_periods=None, center=False`.
3330-
<Rl_S/D> = <Rl_D/G>[column_key/s] # Or: <Rl>.column_key
3331-
<Sr/DF/DF> = <Rl_S/D/G>.sum/max/mean()
3332-
<Sr/DF/DF> = <Rl_S/D/G>.apply(<agg_func>) # Invokes function on every window.
3333-
<Sr/DF/DF> = <Rl_S/D/G>.aggregate(<func/str>) # Invokes function on every window.
3341+
<R_Sr/R_DF/R_GB> = <Sr/DF/GB>.rolling(window_size) # Also: `min_periods=None, center=False`.
3342+
<R_Sr/R_DF> = <R_DF/R_GB>[column_key/s] # Or: <R>.column_key
3343+
<Sr/DF/DF> = <R_Sr/R_DF/R_GB>.sum/max/mean() # Or: <R>.apply/agg(<agg_func/str>)
33343344
```
33353345

33363346

index.html

Lines changed: 16 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -2778,18 +2778,26 @@
27782778
&lt;DF&gt;.to_pickle/excel(&lt;path&gt;)
27792779
&lt;DF&gt;.to_sql(<span class="hljs-string">'&lt;table_name&gt;'</span>, &lt;connection&gt;)
27802780
</code></pre>
2781-
<div><h3 id="groupby">GroupBy</h3><p><strong>Object that groups together rows of a dataframe based on the value of passed column.</strong></p><pre><code class="python language-python hljs">&lt;GB&gt; = &lt;DF&gt;.groupby(column_key/s) <span class="hljs-comment"># DF is split into groups based on passed column.</span>
2782-
&lt;DF&gt; = &lt;GB&gt;.get_group(group_key) <span class="hljs-comment"># Selects a group by value of grouping column.</span>
2781+
<div><h3 id="groupby">GroupBy</h3><p><strong>Object that groups together rows of a dataframe based on the value of passed column.</strong></p><pre><code class="python language-python hljs"><span class="hljs-meta">&gt;&gt;&gt; </span>df = DataFrame([[<span class="hljs-number">1</span>, <span class="hljs-number">2</span>, <span class="hljs-number">3</span>], [<span class="hljs-number">4</span>, <span class="hljs-number">5</span>, <span class="hljs-number">6</span>], [<span class="hljs-number">7</span>, <span class="hljs-number">8</span>, <span class="hljs-number">6</span>]], index=list(<span class="hljs-string">'abc'</span>), columns=list(<span class="hljs-string">'xyz'</span>))
2782+
<span class="hljs-meta">&gt;&gt;&gt; </span>df.groupby(<span class="hljs-string">'z'</span>).get_group(<span class="hljs-number">3</span>)
2783+
x y
2784+
a <span class="hljs-number">1</span> <span class="hljs-number">2</span>
2785+
<span class="hljs-meta">&gt;&gt;&gt; </span>df.groupby(<span class="hljs-string">'z'</span>).get_group(<span class="hljs-number">6</span>)
2786+
x y
2787+
b <span class="hljs-number">4</span> <span class="hljs-number">5</span>
2788+
c <span class="hljs-number">7</span> <span class="hljs-number">8</span>
27832789
</code></pre></div>
27842790

27852791

2792+
<pre><code class="python language-python hljs">&lt;GB&gt; = &lt;DF&gt;.groupby(column_key/s) <span class="hljs-comment"># DF is split into groups based on passed column.</span>
2793+
&lt;DF&gt; = &lt;GB&gt;.get_group(group_key) <span class="hljs-comment"># Selects a group by value of grouping column.</span>
2794+
</code></pre>
27862795
<div><h4 id="applyaggregatetransform-2">Apply, Aggregate, Transform:</h4><pre><code class="python language-python hljs">&lt;DF&gt; = &lt;GB&gt;.sum/max/mean/idxmax/all() <span class="hljs-comment"># Or: &lt;GB&gt;.apply/agg(&lt;agg_func&gt;)</span>
27872796
&lt;DF&gt; = &lt;GB&gt;.rank/diff/cumsum/ffill() <span class="hljs-comment"># Or: &lt;GB&gt;.aggregate(&lt;trans_func&gt;) </span>
27882797
&lt;DF&gt; = &lt;GB&gt;.fillna(&lt;el&gt;) <span class="hljs-comment"># Or: &lt;GB&gt;.transform(&lt;map_func&gt;)</span>
27892798
</code></pre></div>
27902799

2791-
<pre><code class="python language-python hljs"><span class="hljs-meta">&gt;&gt;&gt; </span>df = DataFrame([[<span class="hljs-number">1</span>, <span class="hljs-number">2</span>, <span class="hljs-number">3</span>], [<span class="hljs-number">4</span>, <span class="hljs-number">5</span>, <span class="hljs-number">6</span>], [<span class="hljs-number">7</span>, <span class="hljs-number">8</span>, <span class="hljs-number">6</span>]], index=list(<span class="hljs-string">'abc'</span>), columns=list(<span class="hljs-string">'xyz'</span>))
2792-
<span class="hljs-meta">&gt;&gt;&gt; </span>gb = df.groupby(<span class="hljs-string">'z'</span>)
2800+
<pre><code class="python language-python hljs"><span class="hljs-meta">&gt;&gt;&gt; </span>gb = df.groupby(<span class="hljs-string">'z'</span>)
27932801
x y z
27942802
<span class="hljs-number">3</span>: a <span class="hljs-number">1</span> <span class="hljs-number">2</span> <span class="hljs-number">3</span>
27952803
<span class="hljs-number">6</span>: b <span class="hljs-number">4</span> <span class="hljs-number">5</span> <span class="hljs-number">6</span>
@@ -2810,13 +2818,12 @@
28102818
| | c <span class="hljs-number">11</span> <span class="hljs-number">13</span> | c <span class="hljs-number">1</span> <span class="hljs-number">1</span> | | |
28112819
+-------------+-------------+-------------+-------------+---------------+
28122820
</code></pre>
2813-
<div><h3 id="rolling">Rolling</h3><pre><code class="python language-python hljs">&lt;Rl_S/D/G&gt; = &lt;Sr/DF/GB&gt;.rolling(window_size) <span class="hljs-comment"># Also: `min_periods=None, center=False`.</span>
2814-
&lt;Rl_S/D&gt; = &lt;Rl_D/G&gt;[column_key/s] <span class="hljs-comment"># Or: &lt;Rl&gt;.column_key</span>
2815-
&lt;Sr/DF/DF&gt; = &lt;Rl_S/D/G&gt;.sum/max/mean()
2816-
&lt;Sr/DF/DF&gt; = &lt;Rl_S/D/G&gt;.apply(&lt;agg_func&gt;) <span class="hljs-comment"># Invokes function on every window.</span>
2817-
&lt;Sr/DF/DF&gt; = &lt;Rl_S/D/G&gt;.aggregate(&lt;func/str&gt;) <span class="hljs-comment"># Invokes function on every window.</span>
2821+
<div><h3 id="rolling">Rolling</h3><p><strong>Object for rolling window calculations.</strong></p><pre><code class="python language-python hljs">&lt;R_Sr/R_DF/R_GB&gt; = &lt;Sr/DF/GB&gt;.rolling(window_size) <span class="hljs-comment"># Also: `min_periods=None, center=False`.</span>
2822+
&lt;R_Sr/R_DF&gt; = &lt;R_DF/R_GB&gt;[column_key/s] <span class="hljs-comment"># Or: &lt;R&gt;.column_key</span>
2823+
&lt;Sr/DF/DF&gt; = &lt;R_Sr/R_DF/R_GB&gt;.sum/max/mean() <span class="hljs-comment"># Or: &lt;R&gt;.apply/agg(&lt;agg_func/str&gt;)</span>
28182824
</code></pre></div>
28192825

2826+
28202827
<div><h2 id="plotly"><a href="#plotly" name="plotly">#</a>Plotly</h2><div><h3 id="top10countriesbypercentageofpopulationwithconfirmedcovid19infection">Top 10 Countries by Percentage of Population With Confirmed COVID-19 Infection</h3><pre><code class="text language-text">|
28212828
|
28222829
|

0 commit comments

Comments
 (0)