|
2778 | 2778 | <DF>.to_pickle/excel(<path>)
|
2779 | 2779 | <DF>.to_sql(<span class="hljs-string">'<table_name>'</span>, <connection>)
|
2780 | 2780 | </code></pre>
|
2781 |
| -<div><h3 id="groupby">GroupBy</h3><p><strong>Object that groups together rows of a dataframe based on the value of passed column.</strong></p><pre><code class="python language-python hljs"><GB> = <DF>.groupby(column_key/s) <span class="hljs-comment"># DF is split into groups based on passed column.</span> |
2782 |
| -<DF> = <GB>.get_group(group_key) <span class="hljs-comment"># Selects a group by value of grouping column.</span> |
| 2781 | +<div><h3 id="groupby">GroupBy</h3><p><strong>Object that groups together rows of a dataframe based on the value of passed column.</strong></p><pre><code class="python language-python hljs"><span class="hljs-meta">>>> </span>df = DataFrame([[<span class="hljs-number">1</span>, <span class="hljs-number">2</span>, <span class="hljs-number">3</span>], [<span class="hljs-number">4</span>, <span class="hljs-number">5</span>, <span class="hljs-number">6</span>], [<span class="hljs-number">7</span>, <span class="hljs-number">8</span>, <span class="hljs-number">6</span>]], index=list(<span class="hljs-string">'abc'</span>), columns=list(<span class="hljs-string">'xyz'</span>)) |
| 2782 | +<span class="hljs-meta">>>> </span>df.groupby(<span class="hljs-string">'z'</span>).get_group(<span class="hljs-number">3</span>) |
| 2783 | + x y |
| 2784 | +a <span class="hljs-number">1</span> <span class="hljs-number">2</span> |
| 2785 | +<span class="hljs-meta">>>> </span>df.groupby(<span class="hljs-string">'z'</span>).get_group(<span class="hljs-number">6</span>) |
| 2786 | + x y |
| 2787 | +b <span class="hljs-number">4</span> <span class="hljs-number">5</span> |
| 2788 | +c <span class="hljs-number">7</span> <span class="hljs-number">8</span> |
2783 | 2789 | </code></pre></div>
|
2784 | 2790 |
|
2785 | 2791 |
|
| 2792 | +<pre><code class="python language-python hljs"><GB> = <DF>.groupby(column_key/s) <span class="hljs-comment"># DF is split into groups based on passed column.</span> |
| 2793 | +<DF> = <GB>.get_group(group_key) <span class="hljs-comment"># Selects a group by value of grouping column.</span> |
| 2794 | +</code></pre> |
2786 | 2795 | <div><h4 id="applyaggregatetransform-2">Apply, Aggregate, Transform:</h4><pre><code class="python language-python hljs"><DF> = <GB>.sum/max/mean/idxmax/all() <span class="hljs-comment"># Or: <GB>.apply/agg(<agg_func>)</span>
|
2787 | 2796 | <DF> = <GB>.rank/diff/cumsum/ffill() <span class="hljs-comment"># Or: <GB>.aggregate(<trans_func>) </span>
|
2788 | 2797 | <DF> = <GB>.fillna(<el>) <span class="hljs-comment"># Or: <GB>.transform(<map_func>)</span>
|
2789 | 2798 | </code></pre></div>
|
2790 | 2799 |
|
2791 |
| -<pre><code class="python language-python hljs"><span class="hljs-meta">>>> </span>df = DataFrame([[<span class="hljs-number">1</span>, <span class="hljs-number">2</span>, <span class="hljs-number">3</span>], [<span class="hljs-number">4</span>, <span class="hljs-number">5</span>, <span class="hljs-number">6</span>], [<span class="hljs-number">7</span>, <span class="hljs-number">8</span>, <span class="hljs-number">6</span>]], index=list(<span class="hljs-string">'abc'</span>), columns=list(<span class="hljs-string">'xyz'</span>)) |
2792 |
| -<span class="hljs-meta">>>> </span>gb = df.groupby(<span class="hljs-string">'z'</span>) |
| 2800 | +<pre><code class="python language-python hljs"><span class="hljs-meta">>>> </span>gb = df.groupby(<span class="hljs-string">'z'</span>) |
2793 | 2801 | x y z
|
2794 | 2802 | <span class="hljs-number">3</span>: a <span class="hljs-number">1</span> <span class="hljs-number">2</span> <span class="hljs-number">3</span>
|
2795 | 2803 | <span class="hljs-number">6</span>: b <span class="hljs-number">4</span> <span class="hljs-number">5</span> <span class="hljs-number">6</span>
|
|
2810 | 2818 | | | c <span class="hljs-number">11</span> <span class="hljs-number">13</span> | c <span class="hljs-number">1</span> <span class="hljs-number">1</span> | | |
|
2811 | 2819 | +-------------+-------------+-------------+-------------+---------------+
|
2812 | 2820 | </code></pre>
|
2813 |
| -<div><h3 id="rolling">Rolling</h3><pre><code class="python language-python hljs"><Rl_S/D/G> = <Sr/DF/GB>.rolling(window_size) <span class="hljs-comment"># Also: `min_periods=None, center=False`.</span> |
2814 |
| -<Rl_S/D> = <Rl_D/G>[column_key/s] <span class="hljs-comment"># Or: <Rl>.column_key</span> |
2815 |
| -<Sr/DF/DF> = <Rl_S/D/G>.sum/max/mean() |
2816 |
| -<Sr/DF/DF> = <Rl_S/D/G>.apply(<agg_func>) <span class="hljs-comment"># Invokes function on every window.</span> |
2817 |
| -<Sr/DF/DF> = <Rl_S/D/G>.aggregate(<func/str>) <span class="hljs-comment"># Invokes function on every window.</span> |
| 2821 | +<div><h3 id="rolling">Rolling</h3><p><strong>Object for rolling window calculations.</strong></p><pre><code class="python language-python hljs"><R_Sr/R_DF/R_GB> = <Sr/DF/GB>.rolling(window_size) <span class="hljs-comment"># Also: `min_periods=None, center=False`.</span> |
| 2822 | +<R_Sr/R_DF> = <R_DF/R_GB>[column_key/s] <span class="hljs-comment"># Or: <R>.column_key</span> |
| 2823 | +<Sr/DF/DF> = <R_Sr/R_DF/R_GB>.sum/max/mean() <span class="hljs-comment"># Or: <R>.apply/agg(<agg_func/str>)</span> |
2818 | 2824 | </code></pre></div>
|
2819 | 2825 |
|
| 2826 | + |
2820 | 2827 | <div><h2 id="plotly"><a href="#plotly" name="plotly">#</a>Plotly</h2><div><h3 id="top10countriesbypercentageofpopulationwithconfirmedcovid19infection">Top 10 Countries by Percentage of Population With Confirmed COVID-19 Infection</h3><pre><code class="text language-text">|
|
2821 | 2828 | |
|
2822 | 2829 | |
|
|
0 commit comments