|
11 | 11 |
|
12 | 12 | > 验证二叉搜索树
|
13 | 13 |
|
14 |
| -```go |
| 14 | +```dart |
15 | 15 | /**
|
16 | 16 | * Definition for a binary tree node.
|
17 |
| - * type TreeNode struct { |
18 |
| - * Val int |
19 |
| - * Left *TreeNode |
20 |
| - * Right *TreeNode |
| 17 | + * class TreeNode { |
| 18 | + * int val; |
| 19 | + * TreeNode? left; |
| 20 | + * TreeNode? right; |
| 21 | + * TreeNode([this.val = 0, this.left, this.right]); |
21 | 22 | * }
|
22 | 23 | */
|
23 |
| -func isValidBST(root *TreeNode) bool { |
24 |
| - return dfs(root).valid |
| 24 | +class Solution { |
| 25 | + int min = -1<<63; |
| 26 | + bool isValid = true; |
| 27 | + bool isValidBST(TreeNode? root) { |
| 28 | + dfs(root); |
| 29 | + return isValid; |
| 30 | + } |
| 31 | +
|
| 32 | + void dfs(TreeNode? root){ |
| 33 | + if(root == null){ |
| 34 | + return ; |
| 35 | + } |
| 36 | + dfs(root.left); |
| 37 | + if(root.val > min){ |
| 38 | + min = root.val; |
| 39 | + } else { |
| 40 | + isValid = false; |
| 41 | + } |
| 42 | + dfs(root.right); |
| 43 | + } |
25 | 44 | }
|
26 |
| -type ResultType struct{ |
27 |
| - max int |
28 |
| - min int |
29 |
| - valid bool |
30 |
| -} |
31 |
| -func dfs(root *TreeNode)(result ResultType){ |
32 |
| - if root==nil{ |
33 |
| - result.max=-1<<63 |
34 |
| - result.min=1<<63-1 |
35 |
| - result.valid=true |
36 |
| - return |
37 |
| - } |
38 |
| - |
39 |
| - left:=dfs(root.Left) |
40 |
| - right:=dfs(root.Right) |
41 |
| - |
42 |
| - // 1、满足左边最大值<root<右边最小值 && 左右两边valid |
43 |
| - if root.Val>left.max && root.Val<right.min && left.valid && right.valid { |
44 |
| - result.valid=true |
45 |
| - } |
46 |
| - // 2、更新当前节点的最大最小值 |
47 |
| - result.max=Max(Max(left.max,right.max),root.Val) |
48 |
| - result.min=Min(Min(left.min,right.min),root.Val) |
49 |
| - return |
50 |
| -} |
51 |
| -func Max(a,b int)int{ |
52 |
| - if a>b{ |
53 |
| - return a |
54 |
| - } |
55 |
| - return b |
56 |
| -} |
57 |
| -func Min(a,b int)int{ |
58 |
| - if a>b{ |
59 |
| - return b |
60 |
| - } |
61 |
| - return a |
62 |
| -} |
63 |
| - |
64 | 45 | ```
|
65 | 46 |
|
66 | 47 | [insert-into-a-binary-search-tree](https://leetcode-cn.com/problems/insert-into-a-binary-search-tree/)
|
67 | 48 |
|
68 | 49 | > 给定二叉搜索树(BST)的根节点和要插入树中的值,将值插入二叉搜索树。 返回插入后二叉搜索树的根节点。 保证原始二叉搜索树中不存在新值。
|
69 | 50 |
|
70 |
| -```go |
71 |
| -func insertIntoBST(root *TreeNode, val int) *TreeNode { |
72 |
| - if root==nil{ |
73 |
| - return &TreeNode{Val:val} |
74 |
| - } |
75 |
| - if root.Val<val{ |
76 |
| - root.Right=insertIntoBST(root.Right,val) |
77 |
| - }else{ |
78 |
| - root.Left=insertIntoBST(root.Left,val) |
79 |
| - } |
80 |
| - return root |
| 51 | +> 如果该子树不为空,则问题转化成了将 val 插入到对应子树上。 |
| 52 | +> 否则,在此处新建一个以 val 为值的节点,并链接到其父节点 root 上。 |
| 53 | +
|
| 54 | +```dart |
| 55 | +/** |
| 56 | + * Definition for a binary tree node. |
| 57 | + * class TreeNode { |
| 58 | + * int val; |
| 59 | + * TreeNode? left; |
| 60 | + * TreeNode? right; |
| 61 | + * TreeNode([this.val = 0, this.left, this.right]); |
| 62 | + * } |
| 63 | + */ |
| 64 | +class Solution { |
| 65 | + TreeNode? insertIntoBST(TreeNode? root, int val) { |
| 66 | + if(root == null){ |
| 67 | + return TreeNode(val); |
| 68 | + } |
| 69 | + if(root.val < val){ |
| 70 | + root.right = insertIntoBST(root.right,val); |
| 71 | + } else { |
| 72 | + root.left = insertIntoBST(root.left,val); |
| 73 | + } |
| 74 | + return root; |
| 75 | +
|
| 76 | + } |
81 | 77 | }
|
82 | 78 | ```
|
83 | 79 |
|
84 | 80 | [delete-node-in-a-bst](https://leetcode-cn.com/problems/delete-node-in-a-bst/)
|
85 | 81 |
|
86 | 82 | > 给定一个二叉搜索树的根节点 root 和一个值 key,删除二叉搜索树中的 key 对应的节点,并保证二叉搜索树的性质不变。返回二叉搜索树(有可能被更新)的根节点的引用。
|
87 | 83 |
|
88 |
| -```go |
| 84 | +``` dart |
89 | 85 | /**
|
90 | 86 | * Definition for a binary tree node.
|
91 |
| - * type TreeNode struct { |
92 |
| - * Val int |
93 |
| - * Left *TreeNode |
94 |
| - * Right *TreeNode |
| 87 | + * class TreeNode { |
| 88 | + * int val; |
| 89 | + * TreeNode? left; |
| 90 | + * TreeNode? right; |
| 91 | + * TreeNode([this.val = 0, this.left, this.right]); |
95 | 92 | * }
|
96 | 93 | */
|
97 |
| -func deleteNode(root *TreeNode, key int) *TreeNode { |
| 94 | +class Solution { |
98 | 95 | // 删除节点分为三种情况:
|
99 | 96 | // 1、只有左节点 替换为右
|
100 | 97 | // 2、只有右节点 替换为左
|
101 | 98 | // 3、有左右子节点 左子节点连接到右边最左节点即可
|
102 |
| - if root ==nil{ |
103 |
| - return root |
104 |
| - } |
105 |
| - if root.Val<key{ |
106 |
| - root.Right=deleteNode(root.Right,key) |
107 |
| - }else if root.Val>key{ |
108 |
| - root.Left=deleteNode(root.Left,key) |
109 |
| - }else if root.Val==key{ |
110 |
| - if root.Left==nil{ |
111 |
| - return root.Right |
112 |
| - }else if root.Right==nil{ |
113 |
| - return root.Left |
114 |
| - }else{ |
115 |
| - cur:=root.Right |
116 |
| - // 一直向左找到最后一个左节点即可 |
117 |
| - for cur.Left!=nil{ |
118 |
| - cur=cur.Left |
119 |
| - } |
120 |
| - cur.Left=root.Left |
121 |
| - return root.Right |
122 |
| - } |
123 |
| - } |
124 |
| - return root |
| 99 | + TreeNode? deleteNode(TreeNode? root, int key) { |
| 100 | + if(root == null) { |
| 101 | + return root; |
| 102 | + } |
| 103 | + if(root.val > key){ |
| 104 | + root.left = deleteNode(root.left,key); |
| 105 | + } else if(root.val < key){ |
| 106 | + root.right = deleteNode(root.right,key); |
| 107 | + } else if(root.val == key){ |
| 108 | + if(root.right == null){ |
| 109 | + return root.left; |
| 110 | + }else if(root.left == null){ |
| 111 | + return root.right; |
| 112 | + } else { |
| 113 | + TreeNode? cur = root.right; |
| 114 | + while(cur?.left != null){ |
| 115 | + cur = cur?.left; |
| 116 | + } |
| 117 | + cur?.left = root.left; |
| 118 | + return root.right; |
| 119 | + } |
| 120 | + } |
| 121 | + return root; |
| 122 | + } |
125 | 123 | }
|
126 | 124 | ```
|
127 | 125 |
|
128 | 126 | [balanced-binary-tree](https://leetcode-cn.com/problems/balanced-binary-tree/)
|
129 | 127 |
|
130 | 128 | > 给定一个二叉树,判断它是否是高度平衡的二叉树。
|
131 | 129 |
|
132 |
| -```go |
133 |
| -type ResultType struct{ |
134 |
| - height int |
135 |
| - valid bool |
136 |
| -} |
137 |
| -func isBalanced(root *TreeNode) bool { |
138 |
| - return dfs(root).valid |
139 |
| -} |
140 |
| -func dfs(root *TreeNode)(result ResultType){ |
141 |
| - if root==nil{ |
142 |
| - result.valid=true |
143 |
| - result.height=0 |
144 |
| - return |
145 |
| - } |
146 |
| - left:=dfs(root.Left) |
147 |
| - right:=dfs(root.Right) |
148 |
| - // 满足所有特点:二叉搜索树&&平衡 |
149 |
| - if left.valid&&right.valid&&abs(left.height,right.height)<=1{ |
150 |
| - result.valid=true |
151 |
| - } |
152 |
| - result.height=Max(left.height,right.height)+1 |
153 |
| - return |
154 |
| -} |
155 |
| -func abs(a,b int)int{ |
156 |
| - if a>b{ |
157 |
| - return a-b |
158 |
| - } |
159 |
| - return b-a |
160 |
| -} |
161 |
| -func Max(a,b int)int{ |
162 |
| - if a>b{ |
163 |
| - return a |
164 |
| - } |
165 |
| - return b |
| 130 | +```dart |
| 131 | +/** |
| 132 | + * Definition for a binary tree node. |
| 133 | + * class TreeNode { |
| 134 | + * int val; |
| 135 | + * TreeNode? left; |
| 136 | + * TreeNode? right; |
| 137 | + * TreeNode([this.val = 0, this.left, this.right]); |
| 138 | + * } |
| 139 | + */ |
| 140 | +class Solution { |
| 141 | + bool isBalanced(TreeNode? root) { |
| 142 | + if(root == null){ |
| 143 | + return true; |
| 144 | + } else { |
| 145 | + return (height(root.left) - height(root.right)).abs() <= 1 && isBalanced(root.left) && isBalanced(root.right); |
| 146 | + } |
| 147 | + } |
| 148 | +
|
| 149 | + int height(TreeNode? root) { |
| 150 | + if(root == null){ |
| 151 | + return 0; |
| 152 | + } else { |
| 153 | + return max(height(root.left),height(root.right)) +1; |
| 154 | + } |
| 155 | + } |
166 | 156 | }
|
167 |
| - |
168 | 157 | ```
|
169 | 158 |
|
170 | 159 | ## 练习
|
|
0 commit comments