@@ -24,14 +24,21 @@ class BiaffineDependencyModel(Model):
24
24
The number of POS tags, required if POS tag embeddings are used. Default: ``None``.
25
25
n_chars (int):
26
26
The number of characters, required if character-level representations are used. Default: ``None``.
27
+ encoder (str):
28
+ Encoder to use.
29
+ ``'lstm'``: BiLSTM encoder.
30
+ ``'bert'``: BERT-like pretrained language model (for finetuning), e.g., ``'bert-base-cased'``.
31
+ Default: ``'lstm'``.
27
32
feat (list[str]):
28
- Additional features to use.
33
+ Additional features to use, required if ``encoder='lstm'`` .
29
34
``'tag'``: POS tag embeddings.
30
35
``'char'``: Character-level representations extracted by CharLSTM.
31
- ``'bert'``: BERT representations, other pretrained langugae models like XLNet are also feasible.
36
+ ``'bert'``: BERT representations, other pretrained language models like RoBERTa are also feasible.
32
37
Default: [``'char'``].
33
38
n_embed (int):
34
39
The size of word embeddings. Default: 100.
40
+ n_pretrained (int):
41
+ The size of pretrained word embeddings. Default: 100.
35
42
n_feat_embed (int):
36
43
The size of feature representations. Default: 100.
37
44
n_char_embed (int):
@@ -41,7 +48,7 @@ class BiaffineDependencyModel(Model):
41
48
char_pad_index (int):
42
49
The index of the padding token in the character vocabulary, required if using CharLSTM. Default: 0.
43
50
bert (str):
44
- Specifies which kind of language model to use, e.g., ``'bert-base-cased'`` and ``'xlnet-base-cased'`` .
51
+ Specifies which kind of language model to use, e.g., ``'bert-base-cased'``.
45
52
This is required if ``encoder='bert'`` or using BERT features. The full list can be found in `transformers`_.
46
53
Default: ``None``.
47
54
n_bert_layers (int):
@@ -55,7 +62,8 @@ class BiaffineDependencyModel(Model):
55
62
``first``: take the first subtoken. ``last``: take the last subtoken. ``mean``: take a mean over all.
56
63
Default: ``mean``.
57
64
bert_pad_index (int):
58
- The index of the padding token in BERT vocabulary, required if ``encoder='bert'`` or using BERT features. Default: 0.
65
+ The index of the padding token in BERT vocabulary, required if ``encoder='bert'`` or using BERT features.
66
+ Default: 0.
59
67
freeze (bool):
60
68
If ``True``, freezes BERT parameters, required if using BERT features. Default: ``True``.
61
69
embed_dropout (float):
@@ -88,8 +96,10 @@ def __init__(self,
88
96
n_rels ,
89
97
n_tags = None ,
90
98
n_chars = None ,
99
+ encoder = 'lstm' ,
91
100
feat = ['char' ],
92
101
n_embed = 100 ,
102
+ n_pretrained = 100 ,
93
103
n_feat_embed = 100 ,
94
104
n_char_embed = 50 ,
95
105
n_char_hidden = 100 ,
@@ -230,14 +240,21 @@ class CRFDependencyModel(BiaffineDependencyModel):
230
240
The number of POS tags, required if POS tag embeddings are used. Default: ``None``.
231
241
n_chars (int):
232
242
The number of characters, required if character-level representations are used. Default: ``None``.
243
+ encoder (str):
244
+ Encoder to use.
245
+ ``'lstm'``: BiLSTM encoder.
246
+ ``'bert'``: BERT-like pretrained language model (for finetuning), e.g., ``'bert-base-cased'``.
247
+ Default: ``'lstm'``.
233
248
feat (list[str]):
234
- Additional features to use.
249
+ Additional features to use, required if ``encoder='lstm'`` .
235
250
``'tag'``: POS tag embeddings.
236
251
``'char'``: Character-level representations extracted by CharLSTM.
237
- ``'bert'``: BERT representations, other pretrained langugae models like XLNet are also feasible.
252
+ ``'bert'``: BERT representations, other pretrained language models like RoBERTa are also feasible.
238
253
Default: [``'char'``].
239
254
n_embed (int):
240
255
The size of word embeddings. Default: 100.
256
+ n_pretrained (int):
257
+ The size of pretrained word embeddings. Default: 100.
241
258
n_feat_embed (int):
242
259
The size of feature representations. Default: 100.
243
260
n_char_embed (int):
@@ -247,7 +264,7 @@ class CRFDependencyModel(BiaffineDependencyModel):
247
264
char_pad_index (int):
248
265
The index of the padding token in the character vocabulary, required if using CharLSTM. Default: 0.
249
266
bert (str):
250
- Specifies which kind of language model to use, e.g., ``'bert-base-cased'`` and ``'xlnet-base-cased'`` .
267
+ Specifies which kind of language model to use, e.g., ``'bert-base-cased'``.
251
268
This is required if ``encoder='bert'`` or using BERT features. The full list can be found in `transformers`_.
252
269
Default: ``None``.
253
270
n_bert_layers (int):
@@ -261,7 +278,8 @@ class CRFDependencyModel(BiaffineDependencyModel):
261
278
``first``: take the first subtoken. ``last``: take the last subtoken. ``mean``: take a mean over all.
262
279
Default: ``mean``.
263
280
bert_pad_index (int):
264
- The index of the padding token in BERT vocabulary, required if ``encoder='bert'`` or using BERT features. Default: 0.
281
+ The index of the padding token in BERT vocabulary, required if ``encoder='bert'`` or using BERT features.
282
+ Default: 0.
265
283
freeze (bool):
266
284
If ``True``, freezes BERT parameters, required if using BERT features. Default: ``True``.
267
285
embed_dropout (float):
@@ -342,14 +360,21 @@ class CRF2oDependencyModel(BiaffineDependencyModel):
342
360
The number of POS tags, required if POS tag embeddings are used. Default: ``None``.
343
361
n_chars (int):
344
362
The number of characters, required if character-level representations are used. Default: ``None``.
363
+ encoder (str):
364
+ Encoder to use.
365
+ ``'lstm'``: BiLSTM encoder.
366
+ ``'bert'``: BERT-like pretrained language model (for finetuning), e.g., ``'bert-base-cased'``.
367
+ Default: ``'lstm'``.
345
368
feat (list[str]):
346
- Additional features to use.
369
+ Additional features to use, required if ``encoder='lstm'`` .
347
370
``'tag'``: POS tag embeddings.
348
371
``'char'``: Character-level representations extracted by CharLSTM.
349
- ``'bert'``: BERT representations, other pretrained langugae models like XLNet are also feasible.
372
+ ``'bert'``: BERT representations, other pretrained language models like RoBERTa are also feasible.
350
373
Default: [``'char'``].
351
374
n_embed (int):
352
375
The size of word embeddings. Default: 100.
376
+ n_pretrained (int):
377
+ The size of pretrained word embeddings. Default: 100.
353
378
n_feat_embed (int):
354
379
The size of feature representations. Default: 100.
355
380
n_char_embed (int):
@@ -359,7 +384,7 @@ class CRF2oDependencyModel(BiaffineDependencyModel):
359
384
char_pad_index (int):
360
385
The index of the padding token in the character vocabulary, required if using CharLSTM. Default: 0.
361
386
bert (str):
362
- Specifies which kind of language model to use, e.g., ``'bert-base-cased'`` and ``'xlnet-base-cased'`` .
387
+ Specifies which kind of language model to use, e.g., ``'bert-base-cased'``.
363
388
This is required if ``encoder='bert'`` or using BERT features. The full list can be found in `transformers`_.
364
389
Default: ``None``.
365
390
n_bert_layers (int):
@@ -373,7 +398,8 @@ class CRF2oDependencyModel(BiaffineDependencyModel):
373
398
``first``: take the first subtoken. ``last``: take the last subtoken. ``mean``: take a mean over all.
374
399
Default: ``mean``.
375
400
bert_pad_index (int):
376
- The index of the padding token in BERT vocabulary, required if ``encoder='bert'`` or using BERT features. Default: 0.
401
+ The index of the padding token in BERT vocabulary, required if ``encoder='bert'`` or using BERT features.
402
+ Default: 0.
377
403
freeze (bool):
378
404
If ``True``, freezes BERT parameters, required if using BERT features. Default: ``True``.
379
405
embed_dropout (float):
@@ -405,8 +431,10 @@ def __init__(self,
405
431
n_rels ,
406
432
n_tags = None ,
407
433
n_chars = None ,
434
+ encoder = 'lstm' ,
408
435
feat = ['char' ],
409
436
n_embed = 100 ,
437
+ n_pretrained = 100 ,
410
438
n_feat_embed = 100 ,
411
439
n_char_embed = 50 ,
412
440
n_char_hidden = 100 ,
@@ -571,14 +599,21 @@ class VIDependencyModel(BiaffineDependencyModel):
571
599
The number of POS tags, required if POS tag embeddings are used. Default: ``None``.
572
600
n_chars (int):
573
601
The number of characters, required if character-level representations are used. Default: ``None``.
602
+ encoder (str):
603
+ Encoder to use.
604
+ ``'lstm'``: BiLSTM encoder.
605
+ ``'bert'``: BERT-like pretrained language model (for finetuning), e.g., ``'bert-base-cased'``.
606
+ Default: ``'lstm'``.
574
607
feat (list[str]):
575
- Additional features to use.
608
+ Additional features to use, required if ``encoder='lstm'`` .
576
609
``'tag'``: POS tag embeddings.
577
610
``'char'``: Character-level representations extracted by CharLSTM.
578
- ``'bert'``: BERT representations, other pretrained langugae models like XLNet are also feasible.
611
+ ``'bert'``: BERT representations, other pretrained language models like RoBERTa are also feasible.
579
612
Default: [``'char'``].
580
613
n_embed (int):
581
614
The size of word embeddings. Default: 100.
615
+ n_pretrained (int):
616
+ The size of pretrained word embeddings. Default: 100.
582
617
n_feat_embed (int):
583
618
The size of feature representations. Default: 100.
584
619
n_char_embed (int):
@@ -588,7 +623,7 @@ class VIDependencyModel(BiaffineDependencyModel):
588
623
char_pad_index (int):
589
624
The index of the padding token in the character vocabulary, required if using CharLSTM. Default: 0.
590
625
bert (str):
591
- Specifies which kind of language model to use, e.g., ``'bert-base-cased'`` and ``'xlnet-base-cased'`` .
626
+ Specifies which kind of language model to use, e.g., ``'bert-base-cased'``.
592
627
This is required if ``encoder='bert'`` or using BERT features. The full list can be found in `transformers`_.
593
628
Default: ``None``.
594
629
n_bert_layers (int):
@@ -602,7 +637,8 @@ class VIDependencyModel(BiaffineDependencyModel):
602
637
``first``: take the first subtoken. ``last``: take the last subtoken. ``mean``: take a mean over all.
603
638
Default: ``mean``.
604
639
bert_pad_index (int):
605
- The index of the padding token in BERT vocabulary, required if ``encoder='bert'`` or using BERT features. Default: 0.
640
+ The index of the padding token in BERT vocabulary, required if ``encoder='bert'`` or using BERT features.
641
+ Default: 0.
606
642
freeze (bool):
607
643
If ``True``, freezes BERT parameters, required if using BERT features. Default: ``True``.
608
644
embed_dropout (float):
@@ -643,8 +679,10 @@ def __init__(self,
643
679
n_rels ,
644
680
n_tags = None ,
645
681
n_chars = None ,
682
+ encoder = 'lstm' ,
646
683
feat = ['char' ],
647
684
n_embed = 100 ,
685
+ n_pretrained = 100 ,
648
686
n_feat_embed = 100 ,
649
687
n_char_embed = 50 ,
650
688
n_char_hidden = 100 ,
0 commit comments