|
4 | 4 | "cell_type": "markdown",
|
5 | 5 | "metadata": {},
|
6 | 6 | "source": [
|
7 |
| - "[](https://github.com/lijin-thu/notes-python)" |
8 |
| - ] |
9 |
| - }, |
10 |
| - { |
11 |
| - "cell_type": "markdown", |
12 |
| - "metadata": {}, |
13 |
| - "source": [ |
14 |
| - "# 中文 Python 笔记" |
15 |
| - ] |
16 |
| - }, |
17 |
| - { |
18 |
| - "cell_type": "markdown", |
19 |
| - "metadata": {}, |
20 |
| - "source": [ |
| 7 | + "[](https://github.com/lijin-thu/notes-python)\n", |
| 8 | + "\n", |
| 9 | + "# 中文 Python 笔记\n", |
| 10 | + "\n", |
21 | 11 | "> 版本:0.0.1<br>\n",
|
22 | 12 | "> 作者:李金<br>\n",
|
23 | 13 | "> 邮件:lijinwithyou@gmail.com<br>\n",
|
|
28 | 18 | "\n",
|
29 | 19 | "`Github` 加载 `.ipynb` 的速度较慢,建议在 [Nbviewer](http://nbviewer.ipython.org/github/lijin-THU/notes-python/blob/master/index.ipynb) 中查看该项目。\n",
|
30 | 20 | "\n",
|
31 |
| - "基于本笔记的实体书:《自学Python——编程基础、科学计算及数据分析》已经出版,京东自营链接:\n", |
| 21 | + "基于本笔记的实体书:《自学Python——编程基础、科学计算及数据分析》已经出版。\n", |
32 | 22 | "\n",
|
| 23 | + "京东自营链接:\n", |
33 | 24 | "https://item.jd.com/12328920.html\n",
|
34 |
| - "天猫:\n", |
35 | 25 | "\n",
|
36 |
| - "https://detail.tmall.com/item.htm?id=566648749647\n", |
| 26 | + "天猫、亚马逊、当当均有销售。\n", |
37 | 27 | "\n",
|
38 |
| - "" |
39 |
| - ] |
40 |
| - }, |
41 |
| - { |
42 |
| - "cell_type": "markdown", |
43 |
| - "metadata": {}, |
44 |
| - "source": [ |
45 | 28 | "---\n",
|
46 | 29 | "\n",
|
47 | 30 | "## 简介\n",
|
|
54 | 37 | "\n",
|
55 | 38 | "推荐使用 [Anaconda](http://www.continuum.io/downloads),这个IDE集成了大部分常用的包。\n",
|
56 | 39 | "\n",
|
57 |
| - "笔记内容使用 `ipython notebook` 来展示。\n", |
| 40 | + "笔记内容使用 `jupyter notebook` 来展示。\n", |
58 | 41 | "\n",
|
59 | 42 | "安装好 `Python` 和相应的包之后,可以在命令行下输入:\n",
|
60 | 43 | "\n",
|
61 | 44 | "```\n",
|
62 |
| - "$ ipython notebook\n", |
| 45 | + "$ jupyter notebook\n", |
63 | 46 | "```\n",
|
64 |
| - "来进入 `ipython notebook`。" |
65 |
| - ] |
66 |
| - }, |
67 |
| - { |
68 |
| - "cell_type": "markdown", |
69 |
| - "metadata": {}, |
70 |
| - "source": [ |
| 47 | + "来进入 `jupyter notebook`。\n", |
| 48 | + "\n", |
71 | 49 | "----\n",
|
72 | 50 | "\n",
|
73 | 51 | "## 基本环境配置\n",
|
|
78 | 56 | "``` \n",
|
79 | 57 | "conda update conda\n",
|
80 | 58 | "conda update anaconda\n",
|
81 |
| - "```" |
82 |
| - ] |
83 |
| - }, |
84 |
| - { |
85 |
| - "cell_type": "markdown", |
86 |
| - "metadata": {}, |
87 |
| - "source": [ |
| 59 | + "```\n", |
| 60 | + "\n", |
88 | 61 | "---\n",
|
89 | 62 | "\n",
|
90 | 63 | "## 参考\n",
|
|
95 | 68 | "- [Deep Learning Tutorials](http://deeplearning.net/tutorial/)\n",
|
96 | 69 | "- [High Performance Scientific Computing](http://faculty.washington.edu/rjl/uwhpsc-coursera/index.html)\n",
|
97 | 70 | "- [Scipy Lectures](http://www.scipy-lectures.org/)\n",
|
98 |
| - "- [Pandas.org](http://pandas.pydata.org/pandas-docs/stable/index.html)" |
99 |
| - ] |
100 |
| - }, |
101 |
| - { |
102 |
| - "cell_type": "markdown", |
103 |
| - "metadata": {}, |
104 |
| - "source": [ |
| 71 | + "- [Pandas.org](http://pandas.pydata.org/pandas-docs/stable/index.html)\n", |
| 72 | + "\n", |
105 | 73 | "----\n",
|
106 | 74 | "\n",
|
107 |
| - "## 目录" |
108 |
| - ] |
109 |
| - }, |
110 |
| - { |
111 |
| - "cell_type": "markdown", |
112 |
| - "metadata": {}, |
113 |
| - "source": [ |
| 75 | + "## 目录\n", |
| 76 | + "\n", |
114 | 77 | "可以在 Notebook 中打开 `generate static files.ipynb`,或者命令行中运行代码 `generate_static_files.py` 来生成静态的 HTML 文件。\n",
|
115 | 78 | "\n",
|
116 |
| - "---" |
117 |
| - ] |
118 |
| - }, |
119 |
| - { |
120 |
| - "cell_type": "markdown", |
121 |
| - "metadata": {}, |
122 |
| - "source": [ |
| 79 | + "---\n", |
| 80 | + "\n", |
123 | 81 | "- [01. **Python 工具**](01-python-tools)\n",
|
124 | 82 | "\t - [01.01 Python 简介](01-python-tools/01.01-python-overview.ipynb)\n",
|
125 | 83 | "\t - [01.02 Ipython 解释器](01-python-tools/01.02-ipython-interpreter.ipynb)\n",
|
|
274 | 232 | "\t - [12.02 一维数据结构:Series](12-pandas/12.02-series-in-pandas.ipynb)\n",
|
275 | 233 | "\t - [12.03 二维数据结构:DataFrame](12-pandas/12.03-dataframe-in-pandas.ipynb)"
|
276 | 234 | ]
|
277 |
| - }, |
278 |
| - { |
279 |
| - "cell_type": "markdown", |
280 |
| - "metadata": {}, |
281 |
| - "source": [ |
282 |
| - "觉得有用打赏一下?\n", |
283 |
| - "\n", |
284 |
| - "\n", |
285 |
| - "\n", |
286 |
| - "打个广告:\n", |
287 |
| - "\n", |
288 |
| - "- 基于本笔记第一二节录制的视频:[Python小白入门课视频教学](http://www.softlinkonline.cn/zhibo.html?id=43)" |
289 |
| - ] |
290 | 235 | }
|
291 | 236 | ],
|
292 | 237 | "metadata": {
|
|
305 | 250 | "name": "python",
|
306 | 251 | "nbconvert_exporter": "python",
|
307 | 252 | "pygments_lexer": "ipython2",
|
308 |
| - "version": "2.7.14" |
| 253 | + "version": "2.7.15" |
309 | 254 | }
|
310 | 255 | },
|
311 | 256 | "nbformat": 4,
|
|
0 commit comments