-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathabstractitensornetwork.jl
940 lines (806 loc) · 25.7 KB
/
abstractitensornetwork.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
using DataGraphs:
DataGraphs, edge_data, underlying_graph, underlying_graph_type, vertex_data
using Dictionaries: Dictionary
using Graphs:
Graphs,
Graph,
add_edge!,
add_vertex!,
bfs_tree,
center,
dst,
edges,
edgetype,
ne,
neighbors,
rem_edge!,
src,
vertices
using ITensors:
ITensors,
ITensor,
@Algorithm_str,
addtags,
combiner,
commoninds,
commontags,
contract,
dag,
hascommoninds,
noprime,
onehot,
prime,
replaceprime,
setprime,
unioninds,
uniqueinds,
replacetags,
settags,
sim,
swaptags
using .ITensorsExtensions: ITensorsExtensions, indtype, promote_indtype
using LinearAlgebra: LinearAlgebra, factorize
using MacroTools: @capture
using NamedGraphs: NamedGraphs, NamedGraph, not_implemented, steiner_tree
using NamedGraphs.GraphsExtensions:
⊔, directed_graph, incident_edges, rename_vertices, vertextype
using NDTensors: NDTensors, dim, Algorithm
using SplitApplyCombine: flatten
abstract type AbstractITensorNetwork{V} <: AbstractDataGraph{V,ITensor,ITensor} end
# Field access
data_graph_type(::Type{<:AbstractITensorNetwork}) = not_implemented()
data_graph(graph::AbstractITensorNetwork) = not_implemented()
# TODO: Define a generic fallback for `AbstractDataGraph`?
DataGraphs.edge_data_eltype(::Type{<:AbstractITensorNetwork}) = ITensor
# Graphs.jl overloads
function Graphs.weights(graph::AbstractITensorNetwork)
V = vertextype(graph)
es = Tuple.(edges(graph))
ws = Dictionary{Tuple{V,V},Float64}(es, undef)
for e in edges(graph)
w = log2(dim(commoninds(graph, e)))
ws[(src(e), dst(e))] = w
end
return ws
end
# Copy
Base.copy(tn::AbstractITensorNetwork) = not_implemented()
# Iteration
Base.iterate(tn::AbstractITensorNetwork, args...) = iterate(vertex_data(tn), args...)
# TODO: This contrasts with the `DataGraphs.AbstractDataGraph` definition,
# where it is defined as the `vertextype`. Does that cause problems or should it be changed?
Base.eltype(tn::AbstractITensorNetwork) = eltype(vertex_data(tn))
# Overload if needed
Graphs.is_directed(::Type{<:AbstractITensorNetwork}) = false
# Derived interface, may need to be overloaded
function DataGraphs.underlying_graph_type(G::Type{<:AbstractITensorNetwork})
return underlying_graph_type(data_graph_type(G))
end
# AbstractDataGraphs overloads
function DataGraphs.vertex_data(graph::AbstractITensorNetwork, args...)
return vertex_data(data_graph(graph), args...)
end
function DataGraphs.edge_data(graph::AbstractITensorNetwork, args...)
return edge_data(data_graph(graph), args...)
end
DataGraphs.underlying_graph(tn::AbstractITensorNetwork) = underlying_graph(data_graph(tn))
function NamedGraphs.vertex_positions(tn::AbstractITensorNetwork)
return NamedGraphs.vertex_positions(underlying_graph(tn))
end
function NamedGraphs.ordered_vertices(tn::AbstractITensorNetwork)
return NamedGraphs.ordered_vertices(underlying_graph(tn))
end
#
# Iteration
#
# TODO: iteration
# TODO: different `map` functionalities as defined for ITensors.AbstractMPS
# TODO: broadcasting
function Base.union(tn1::AbstractITensorNetwork, tn2::AbstractITensorNetwork; kwargs...)
# TODO: Use a different constructor call here?
tn = _ITensorNetwork(union(data_graph(tn1), data_graph(tn2)); kwargs...)
# Add any new edges that are introduced during the union
for v1 in vertices(tn1)
for v2 in vertices(tn2)
if hascommoninds(tn, v1 => v2)
add_edge!(tn, v1 => v2)
end
end
end
return tn
end
function NamedGraphs.rename_vertices(f::Function, tn::AbstractITensorNetwork)
# TODO: Use a different constructor call here?
return _ITensorNetwork(rename_vertices(f, data_graph(tn)))
end
#
# Data modification
#
function setindex_preserve_graph!(tn::AbstractITensorNetwork, value, vertex)
data_graph(tn)[vertex] = value
return tn
end
# TODO: Move to `BaseExtensions` module.
function is_setindex!_expr(expr::Expr)
return is_assignment_expr(expr) && is_getindex_expr(first(expr.args))
end
is_setindex!_expr(x) = false
is_getindex_expr(expr::Expr) = (expr.head === :ref)
is_getindex_expr(x) = false
is_assignment_expr(expr::Expr) = (expr.head === :(=))
is_assignment_expr(expr) = false
# TODO: Define this in terms of a function mapping
# preserve_graph_function(::typeof(setindex!)) = setindex!_preserve_graph
# preserve_graph_function(::typeof(map_vertex_data)) = map_vertex_data_preserve_graph
# Also allow annotating codeblocks like `@views`.
macro preserve_graph(expr)
if !is_setindex!_expr(expr)
error(
"preserve_graph must be used with setindex! syntax (as @preserve_graph a[i,j,...] = value)",
)
end
@capture(expr, array_[indices__] = value_)
return :(setindex_preserve_graph!($(esc(array)), $(esc(value)), $(esc.(indices)...)))
end
function ITensors.hascommoninds(tn::AbstractITensorNetwork, edge::Pair)
return hascommoninds(tn, edgetype(tn)(edge))
end
function ITensors.hascommoninds(tn::AbstractITensorNetwork, edge::AbstractEdge)
return hascommoninds(tn[src(edge)], tn[dst(edge)])
end
function Base.setindex!(tn::AbstractITensorNetwork, value, v)
# v = to_vertex(tn, index...)
@preserve_graph tn[v] = value
for edge in incident_edges(tn, v)
rem_edge!(tn, edge)
end
for vertex in vertices(tn)
if v ≠ vertex
edge = v => vertex
if hascommoninds(tn, edge)
add_edge!(tn, edge)
end
end
end
return tn
end
# Convenience wrapper
function eachtensor(tn::AbstractITensorNetwork, vertices=vertices(tn))
return map(v -> tn[v], vertices)
end
#
# Promotion and conversion
#
function ITensorsExtensions.promote_indtypeof(tn::AbstractITensorNetwork)
return mapreduce(promote_indtype, eachtensor(tn)) do t
return indtype(t)
end
end
function NDTensors.scalartype(tn::AbstractITensorNetwork)
return mapreduce(eltype, promote_type, eachtensor(tn); init=Bool)
end
# TODO: Define `eltype(::AbstractITensorNetwork)` as `ITensor`?
# TODO: Implement using `adapt`
function NDTensors.convert_scalartype(eltype::Type{<:Number}, tn::AbstractITensorNetwork)
tn = copy(tn)
vertex_data(tn) .= ITensors.adapt.(Ref(eltype), vertex_data(tn))
return tn
end
function Base.complex(tn::AbstractITensorNetwork)
return NDTensors.convert_scalartype(complex(scalartype(tn)), tn)
end
#
# Conversion to Graphs
#
function Graphs.Graph(tn::AbstractITensorNetwork)
return Graph(Vector{ITensor}(tn))
end
function NamedGraphs.NamedGraph(tn::AbstractITensorNetwork)
return NamedGraph(Vector{ITensor}(tn))
end
#
# Conversion to IndsNetwork
#
# Convert to an IndsNetwork
function IndsNetwork(tn::AbstractITensorNetwork)
is = IndsNetwork(underlying_graph(tn))
for v in vertices(tn)
is[v] = uniqueinds(tn, v)
end
for e in edges(tn)
is[e] = commoninds(tn, e)
end
return is
end
# Alias
indsnetwork(tn::AbstractITensorNetwork) = IndsNetwork(tn)
# TODO: Output a `VertexDataGraph`? Unfortunately
# `IndsNetwork` doesn't allow iterating over vertex data.
function siteinds(tn::AbstractITensorNetwork)
is = IndsNetwork(underlying_graph(tn))
for v in vertices(tn)
is[v] = uniqueinds(tn, v)
end
return is
end
function flatten_siteinds(tn::AbstractITensorNetwork)
# `identity.(...)` narrows the type, maybe there is a better way.
return identity.(flatten(map(v -> siteinds(tn, v), vertices(tn))))
end
function linkinds(tn::AbstractITensorNetwork)
is = IndsNetwork(underlying_graph(tn))
for e in edges(tn)
is[e] = commoninds(tn, e)
end
return is
end
function flatten_linkinds(tn::AbstractITensorNetwork)
# `identity.(...)` narrows the type, maybe there is a better way.
return identity.(flatten(map(e -> linkinds(tn, e), edges(tn))))
end
#
# Index access
#
function neighbor_tensors(tn::AbstractITensorNetwork, vertex)
return eachtensor(tn, neighbors(tn, vertex))
end
function ITensors.uniqueinds(tn::AbstractITensorNetwork, vertex)
tn_vertex = [tn[vertex]; collect(neighbor_tensors(tn, vertex))]
return reduce(setdiff, inds.(tn_vertex))
end
function ITensors.uniqueinds(tn::AbstractITensorNetwork, edge::AbstractEdge)
return uniqueinds(tn[src(edge)], tn[dst(edge)])
end
function ITensors.uniqueinds(tn::AbstractITensorNetwork, edge::Pair)
return uniqueinds(tn, edgetype(tn)(edge))
end
function siteinds(tn::AbstractITensorNetwork, vertex)
return uniqueinds(tn, vertex)
end
# Fix ambiguity error with IndsNetwork constructor.
function siteinds(tn::AbstractITensorNetwork, vertex::Int)
return uniqueinds(tn, vertex)
end
function ITensors.commoninds(tn::AbstractITensorNetwork, edge)
e = edgetype(tn)(edge)
return commoninds(tn[src(e)], tn[dst(e)])
end
function linkinds(tn::AbstractITensorNetwork, edge)
return commoninds(tn, edge)
end
# Priming and tagging (changing Index identifiers)
function ITensors.replaceinds(
tn::AbstractITensorNetwork, is_is′::Pair{<:IndsNetwork,<:IndsNetwork}
)
tn = copy(tn)
is, is′ = is_is′
@assert underlying_graph(is) == underlying_graph(is′)
for v in vertices(is)
isassigned(is, v) || continue
@preserve_graph tn[v] = replaceinds(tn[v], is[v] => is′[v])
end
for e in edges(is)
isassigned(is, e) || continue
for v in (src(e), dst(e))
@preserve_graph tn[v] = replaceinds(tn[v], is[e] => is′[e])
end
end
return tn
end
function map_inds(f, tn::AbstractITensorNetwork, args...; kwargs...)
is = IndsNetwork(tn)
is′ = map_inds(f, is, args...; kwargs...)
return replaceinds(tn, is => is′)
end
const map_inds_label_functions = [
:prime,
:setprime,
:noprime,
:replaceprime,
# :swapprime, # TODO: add @test_broken as a reminder
:addtags,
:removetags,
:replacetags,
:settags,
:sim,
:swaptags,
:dag,
# :replaceind,
# :replaceinds,
# :swapind,
# :swapinds,
]
for f in map_inds_label_functions
@eval begin
function ITensors.$f(n::Union{IndsNetwork,AbstractITensorNetwork}, args...; kwargs...)
return map_inds($f, n, args...; kwargs...)
end
function ITensors.$f(
ffilter::typeof(linkinds),
n::Union{IndsNetwork,AbstractITensorNetwork},
args...;
kwargs...,
)
return map_inds($f, n, args...; sites=[], kwargs...)
end
function ITensors.$f(
ffilter::typeof(siteinds),
n::Union{IndsNetwork,AbstractITensorNetwork},
args...;
kwargs...,
)
return map_inds($f, n, args...; links=[], kwargs...)
end
end
end
LinearAlgebra.adjoint(tn::Union{IndsNetwork,AbstractITensorNetwork}) = prime(tn)
function map_vertex_data(f, tn::AbstractITensorNetwork)
tn = copy(tn)
for v in vertices(tn)
tn[v] = f(tn[v])
end
return tn
end
# TODO: Define `@preserve_graph map_vertex_data(f, tn)`
function map_vertex_data_preserve_graph(f, tn::AbstractITensorNetwork)
tn = copy(tn)
for v in vertices(tn)
@preserve_graph tn[v] = f(tn[v])
end
return tn
end
function Base.conj(tn::AbstractITensorNetwork)
# TODO: Use `@preserve_graph map_vertex_data(f, tn)`
return map_vertex_data_preserve_graph(conj, tn)
end
function ITensors.dag(tn::AbstractITensorNetwork)
# TODO: Use `@preserve_graph map_vertex_data(f, tn)`
return map_vertex_data_preserve_graph(dag, tn)
end
# TODO: should this make sure that internal indices
# don't clash?
function ⊗(
tn1::AbstractITensorNetwork,
tn2::AbstractITensorNetwork,
tn_tail::AbstractITensorNetwork...;
kwargs...,
)
return ⊔(tn1, tn2, tn_tail...; kwargs...)
end
function ⊗(
tn1::Pair{<:Any,<:AbstractITensorNetwork},
tn2::Pair{<:Any,<:AbstractITensorNetwork},
tn_tail::Pair{<:Any,<:AbstractITensorNetwork}...;
kwargs...,
)
return ⊔(tn1, tn2, tn_tail...; kwargs...)
end
# TODO: how to define this lazily?
#norm(tn::AbstractITensorNetwork) = sqrt(inner(tn, tn))
function Base.isapprox(
x::AbstractITensorNetwork,
y::AbstractITensorNetwork;
atol::Real=0,
rtol::Real=Base.rtoldefault(scalartype(x), scalartype(y), atol),
)
error("Not implemented")
d = norm(x - y)
if !isfinite(d)
error(
"In `isapprox(x::AbstractITensorNetwork, y::AbstractITensorNetwork)`, `norm(x - y)` is not finite",
)
end
return d <= max(atol, rtol * max(norm(x), norm(y)))
end
function ITensors.contract(tn::AbstractITensorNetwork, edge::Pair; kwargs...)
return contract(tn, edgetype(tn)(edge); kwargs...)
end
# Contract the tensors at vertices `src(edge)` and `dst(edge)`
# and store the results in the vertex `dst(edge)`, removing
# the vertex `src(edge)`.
# TODO: write this in terms of a more generic function
# `Graphs.merge_vertices!` (https://github.com/mtfishman/ITensorNetworks.jl/issues/12)
function NDTensors.contract(
tn::AbstractITensorNetwork, edge::AbstractEdge; merged_vertex=dst(edge)
)
V = promote_type(vertextype(tn), typeof(merged_vertex))
# TODO: Check `ITensorNetwork{V}`, shouldn't need a copy here.
tn = ITensorNetwork{V}(copy(tn))
neighbors_src = setdiff(neighbors(tn, src(edge)), [dst(edge)])
neighbors_dst = setdiff(neighbors(tn, dst(edge)), [src(edge)])
new_itensor = tn[src(edge)] * tn[dst(edge)]
# The following is equivalent to:
#
# tn[dst(edge)] = new_itensor
#
# but without having to search all vertices
# to update the edges.
rem_vertex!(tn, src(edge))
rem_vertex!(tn, dst(edge))
add_vertex!(tn, merged_vertex)
for n_src in neighbors_src
add_edge!(tn, merged_vertex => n_src)
end
for n_dst in neighbors_dst
add_edge!(tn, merged_vertex => n_dst)
end
@preserve_graph tn[merged_vertex] = new_itensor
return tn
end
function ITensors.tags(tn::AbstractITensorNetwork, edge)
is = linkinds(tn, edge)
return commontags(is)
end
function LinearAlgebra.svd(tn::AbstractITensorNetwork, edge::Pair; kwargs...)
return svd(tn, edgetype(tn)(edge))
end
function LinearAlgebra.svd(
tn::AbstractITensorNetwork,
edge::AbstractEdge;
U_vertex=src(edge),
S_vertex=(edge, "S"),
V_vertex=(edge, "V"),
u_tags=tags(tn, edge),
v_tags=tags(tn, edge),
kwargs...,
)
tn = copy(tn)
left_inds = uniqueinds(tn, edge)
U, S, V = svd(tn[src(edge)], left_inds; lefttags=u_tags, righttags=v_tags, kwargs...)
rem_vertex!(tn, src(edge))
add_vertex!(tn, U_vertex)
tn[U_vertex] = U
add_vertex!(tn, S_vertex)
tn[S_vertex] = S
add_vertex!(tn, V_vertex)
tn[V_vertex] = V
return tn
end
function LinearAlgebra.qr(
tn::AbstractITensorNetwork,
edge::AbstractEdge;
Q_vertex=src(edge),
R_vertex=(edge, "R"),
tags=tags(tn, edge),
kwargs...,
)
tn = copy(tn)
left_inds = uniqueinds(tn, edge)
Q, R = factorize(tn[src(edge)], left_inds; tags, kwargs...)
rem_vertex!(tn, src(edge))
add_vertex!(tn, Q_vertex)
tn[Q_vertex] = Q
add_vertex!(tn, R_vertex)
tn[R_vertex] = R
return tn
end
function LinearAlgebra.factorize(
tn::AbstractITensorNetwork,
edge::AbstractEdge;
X_vertex=src(edge),
Y_vertex=("Y", edge),
tags=tags(tn, edge),
kwargs...,
)
# Promote vertex type
V = promote_type(vertextype(tn), typeof(X_vertex), typeof(Y_vertex))
# TODO: Check `ITensorNetwork{V}`, shouldn't need a copy here.
tn = ITensorNetwork{V}(copy(tn))
neighbors_X = setdiff(neighbors(tn, src(edge)), [dst(edge)])
left_inds = uniqueinds(tn, edge)
X, Y = factorize(tn[src(edge)], left_inds; tags, kwargs...)
rem_vertex!(tn, src(edge))
add_vertex!(tn, X_vertex)
add_vertex!(tn, Y_vertex)
add_edge!(tn, X_vertex => Y_vertex)
for nX in neighbors_X
add_edge!(tn, X_vertex => nX)
end
add_edge!(tn, Y_vertex => dst(edge))
@preserve_graph tn[X_vertex] = X
@preserve_graph tn[Y_vertex] = Y
return tn
end
function LinearAlgebra.factorize(tn::AbstractITensorNetwork, edge::Pair; kwargs...)
return factorize(tn, edgetype(tn)(edge); kwargs...)
end
# For ambiguity error; TODO: decide whether to use graph mutating methods when resulting graph is unchanged?
function gauge_edge(
alg::Algorithm"orthogonalize", tn::AbstractITensorNetwork, edge::AbstractEdge; kwargs...
)
# tn = factorize(tn, edge; kwargs...)
# # TODO: Implement as `only(common_neighbors(tn, src(edge), dst(edge)))`
# new_vertex = only(neighbors(tn, src(edge)) ∩ neighbors(tn, dst(edge)))
# return contract(tn, new_vertex => dst(edge))
tn = copy(tn)
left_inds = uniqueinds(tn, edge)
ltags = tags(tn, edge)
X, Y = factorize(tn[src(edge)], left_inds; tags=ltags, ortho="left", kwargs...)
tn[src(edge)] = X
tn[dst(edge)] *= Y
return tn
end
# For ambiguity error; TODO: decide whether to use graph mutating methods when resulting graph is unchanged?
function gauge_walk(
alg::Algorithm, tn::AbstractITensorNetwork, edges::Vector{<:AbstractEdge}; kwargs...
)
tn = copy(tn)
for edge in edges
tn = gauge_edge(alg, tn, edge; kwargs...)
end
return tn
end
function gauge_walk(alg::Algorithm, tn::AbstractITensorNetwork, edge::Pair; kwargs...)
return gauge_edge(alg::Algorithm, tn, edgetype(tn)(edge); kwargs...)
end
function gauge_walk(
alg::Algorithm, tn::AbstractITensorNetwork, edges::Vector{<:Pair}; kwargs...
)
return gauge_walk(alg, tn, edgetype(tn).(edges); kwargs...)
end
function tree_gauge(alg::Algorithm, ψ::AbstractITensorNetwork, region)
return tree_gauge(alg, ψ, [region])
end
#Get the path that moves the gauge from a to b on a tree
#TODO: Move to NamedGraphs
function edge_sequence_between_regions(g::AbstractGraph, region_a::Vector, region_b::Vector)
issetequal(region_a, region_b) && return edgetype(g)[]
st = steiner_tree(g, union(region_a, region_b))
path = post_order_dfs_edges(st, first(region_b))
path = filter(e -> !((src(e) ∈ region_b) && (dst(e) ∈ region_b)), path)
return path
end
# Gauge a ITensorNetwork from cur_region towards new_region, treating
# the network as a tree spanned by a spanning tree.
function tree_gauge(
alg::Algorithm,
ψ::AbstractITensorNetwork,
cur_region::Vector,
new_region::Vector;
kwargs...,
)
es = edge_sequence_between_regions(ψ, cur_region, new_region)
ψ = gauge_walk(alg, ψ, es; kwargs...)
return ψ
end
# Gauge a ITensorNetwork towards a region, treating
# the network as a tree spanned by a spanning tree.
function tree_gauge(alg::Algorithm, ψ::AbstractITensorNetwork, region::Vector)
return tree_gauge(alg, ψ, collect(vertices(ψ)), region)
end
function tree_orthogonalize(ψ::AbstractITensorNetwork, cur_region, new_region; kwargs...)
return tree_gauge(Algorithm("orthogonalize"), ψ, cur_region, new_region; kwargs...)
end
function tree_orthogonalize(ψ::AbstractITensorNetwork, region; kwargs...)
return tree_gauge(Algorithm("orthogonalize"), ψ, region; kwargs...)
end
# TODO: decide whether to use graph mutating methods when resulting graph is unchanged?
function _truncate_edge(tn::AbstractITensorNetwork, edge::AbstractEdge; kwargs...)
tn = copy(tn)
left_inds = uniqueinds(tn, edge)
ltags = tags(tn, edge)
U, S, V = svd(tn[src(edge)], left_inds; lefttags=ltags, kwargs...)
tn[src(edge)] = U
tn[dst(edge)] *= (S * V)
return tn
end
function Base.truncate(tn::AbstractITensorNetwork, edge::AbstractEdge; kwargs...)
return _truncate_edge(tn, edge; kwargs...)
end
function Base.truncate(tn::AbstractITensorNetwork, edge::Pair; kwargs...)
return truncate(tn, edgetype(tn)(edge); kwargs...)
end
function Base.:*(c::Number, ψ::AbstractITensorNetwork)
v₁ = first(vertices(ψ))
cψ = copy(ψ)
cψ[v₁] *= c
return cψ
end
# Return a list of vertices in the ITensorNetwork `ψ`
# that share indices with the ITensor `T`
function neighbor_vertices(ψ::AbstractITensorNetwork, T::ITensor)
ψT = ψ ⊔ ITensorNetwork([T])
v⃗ = neighbors(ψT, (1, 2))
return first.(v⃗)
end
function linkinds_combiners(tn::AbstractITensorNetwork; edges=edges(tn))
combiners = DataGraph(
directed_graph(underlying_graph(tn));
vertex_data_eltype=ITensor,
edge_data_eltype=ITensor,
)
for e in edges
C = combiner(linkinds(tn, e); tags=edge_tag(e))
combiners[e] = C
combiners[reverse(e)] = dag(C)
end
return combiners
end
function combine_linkinds(tn::AbstractITensorNetwork, combiners)
combined_tn = copy(tn)
for e in edges(tn)
if !isempty(linkinds(tn, e)) && haskey(edge_data(combiners), e)
combined_tn[src(e)] = combined_tn[src(e)] * combiners[e]
combined_tn[dst(e)] = combined_tn[dst(e)] * combiners[reverse(e)]
end
end
return combined_tn
end
function combine_linkinds(
tn::AbstractITensorNetwork; edges::Vector{<:Union{Pair,AbstractEdge}}=edges(tn)
)
combiners = linkinds_combiners(tn; edges)
return combine_linkinds(tn, combiners)
end
function split_index(
tn::AbstractITensorNetwork,
edges_to_split;
src_ind_map::Function=identity,
dst_ind_map::Function=prime,
)
tn = copy(tn)
for e in edges_to_split
inds = commoninds(tn[src(e)], tn[dst(e)])
tn[src(e)] = replaceinds(tn[src(e)], inds, src_ind_map(inds))
tn[dst(e)] = replaceinds(tn[dst(e)], inds, dst_ind_map(inds))
end
return tn
end
function inner_network(x::AbstractITensorNetwork, y::AbstractITensorNetwork; kwargs...)
return LinearFormNetwork(x, y; kwargs...)
end
function inner_network(
x::AbstractITensorNetwork, A::AbstractITensorNetwork, y::AbstractITensorNetwork; kwargs...
)
return BilinearFormNetwork(A, x, y; kwargs...)
end
norm_sqr_network(ψ::AbstractITensorNetwork) = inner_network(ψ, ψ)
#
# Printing
#
function Base.show(io::IO, mime::MIME"text/plain", graph::AbstractITensorNetwork)
println(io, "$(typeof(graph)) with $(nv(graph)) vertices:")
show(io, mime, vertices(graph))
println(io, "\n")
println(io, "and $(ne(graph)) edge(s):")
for e in edges(graph)
show(io, mime, e)
println(io)
end
println(io)
println(io, "with vertex data:")
show(io, mime, inds.(vertex_data(graph)))
return nothing
end
Base.show(io::IO, graph::AbstractITensorNetwork) = show(io, MIME"text/plain"(), graph)
# TODO: Move to an `ITensorNetworksVisualizationInterfaceExt`
# package extension (and define a `VisualizationInterface` package
# based on `ITensorVisualizationCore`.).
using ITensors.ITensorVisualizationCore: ITensorVisualizationCore, visualize
function ITensorVisualizationCore.visualize(
tn::AbstractITensorNetwork,
args...;
vertex_labels_prefix=nothing,
vertex_labels=nothing,
kwargs...,
)
if !isnothing(vertex_labels_prefix)
vertex_labels = [vertex_labels_prefix * string(v) for v in vertices(tn)]
end
# TODO: Use `tokenize_vertex`.
return visualize(collect(eachtensor(tn)), args...; vertex_labels, kwargs...)
end
#
# Link dimensions
#
function maxlinkdim(tn::AbstractITensorNetwork)
md = 1
for e in edges(tn)
md = max(md, linkdim(tn, e))
end
return md
end
function linkdim(tn::AbstractITensorNetwork, edge::Pair)
return linkdim(tn, edgetype(tn)(edge))
end
function linkdim(tn::AbstractITensorNetwork{V}, edge::AbstractEdge{V}) where {V}
ls = linkinds(tn, edge)
return prod([isnothing(l) ? 1 : dim(l) for l in ls])
end
function linkdims(tn::AbstractITensorNetwork{V}) where {V}
ld = DataGraph{V}(
copy(underlying_graph(tn)); vertex_data_eltype=Nothing, edge_data_eltype=Int
)
for e in edges(ld)
ld[e] = linkdim(tn, e)
end
return ld
end
#
# Site combiners
#
# TODO: will be broken, fix this
function site_combiners(tn::AbstractITensorNetwork{V}) where {V}
Cs = DataGraph{V,ITensor}(copy(underlying_graph(tn)))
for v in vertices(tn)
s = siteinds(tn, v)
Cs[v] = combiner(s; tags=commontags(s))
end
return Cs
end
function insert_linkinds(
tn::AbstractITensorNetwork, edges=edges(tn); link_space=trivial_space(tn)
)
tn = copy(tn)
for e in edges
if !hascommoninds(tn, e)
iₑ = Index(link_space, edge_tag(e))
X = onehot(iₑ => 1)
tn[src(e)] *= X
tn[dst(e)] *= dag(X)
end
end
return tn
end
# TODO: What to output? Could be an `IndsNetwork`. Or maybe
# that would be a different function `commonindsnetwork`.
# Even in that case, this could output a `Dictionary`
# from the edges to the common inds on that edge.
function ITensors.commoninds(tn1::AbstractITensorNetwork, tn2::AbstractITensorNetwork)
inds = Index[]
for v1 in vertices(tn1)
for v2 in vertices(tn2)
append!(inds, commoninds(tn1[v1], tn2[v2]))
end
end
return inds
end
"""Check if the edge of an itensornetwork has multiple indices"""
is_multi_edge(tn::AbstractITensorNetwork, e) = length(linkinds(tn, e)) > 1
is_multi_edge(tn::AbstractITensorNetwork) = Base.Fix1(is_multi_edge, tn)
"""Add two itensornetworks together by growing the bond dimension. The network structures need to be have the same vertex names, same site index on each vertex """
function add(tn1::AbstractITensorNetwork, tn2::AbstractITensorNetwork)
@assert issetequal(vertices(tn1), vertices(tn2))
tn1 = combine_linkinds(tn1; edges=filter(is_multi_edge(tn1), edges(tn1)))
tn2 = combine_linkinds(tn2; edges=filter(is_multi_edge(tn2), edges(tn2)))
edges_tn1, edges_tn2 = edges(tn1), edges(tn2)
if !issetequal(edges_tn1, edges_tn2)
new_edges = union(edges_tn1, edges_tn2)
tn1 = insert_linkinds(tn1, new_edges)
tn2 = insert_linkinds(tn2, new_edges)
end
edges_tn1, edges_tn2 = edges(tn1), edges(tn2)
@assert issetequal(edges_tn1, edges_tn2)
tn12 = copy(tn1)
new_edge_indices = Dict(
zip(
edges_tn1,
[
Index(
dim(only(linkinds(tn1, e))) + dim(only(linkinds(tn2, e))),
tags(only(linkinds(tn1, e))),
) for e in edges_tn1
],
),
)
#Create vertices of tn12 as direct sum of tn1[v] and tn2[v]. Work out the matching indices by matching edges. Make index tags those of tn1[v]
for v in vertices(tn1)
@assert issetequal(siteinds(tn1, v), siteinds(tn2, v))
e1_v = filter(x -> src(x) == v || dst(x) == v, edges_tn1)
e2_v = filter(x -> src(x) == v || dst(x) == v, edges_tn2)
@assert issetequal(e1_v, e2_v)
tn1v_linkinds = Index[only(linkinds(tn1, e)) for e in e1_v]
tn2v_linkinds = Index[only(linkinds(tn2, e)) for e in e1_v]
tn12v_linkinds = Index[new_edge_indices[e] for e in e1_v]
@assert length(tn1v_linkinds) == length(tn2v_linkinds)
tn12[v] = ITensors.directsum(
tn12v_linkinds,
tn1[v] => Tuple(tn1v_linkinds),
tn2[v] => Tuple(tn2v_linkinds);
tags=tags.(Tuple(tn1v_linkinds)),
)
end
return tn12
end
Base.:+(tn1::AbstractITensorNetwork, tn2::AbstractITensorNetwork) = add(tn1, tn2)
ITensors.hasqns(tn::AbstractITensorNetwork) = any(v -> hasqns(tn[v]), vertices(tn))