-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathitensornetwork.jl
249 lines (216 loc) · 7.59 KB
/
itensornetwork.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
using DataGraphs: DataGraphs, DataGraph
using Dictionaries: Indices, dictionary
using ITensors: ITensors, ITensor, op, state
using .ITensorsExtensions: trivial_space
using NamedGraphs: NamedGraphs, NamedEdge, NamedGraph, vertextype
struct Private end
"""
ITensorNetwork
"""
struct ITensorNetwork{V} <: AbstractITensorNetwork{V}
data_graph::DataGraph{V,ITensor,ITensor,NamedGraph{V},NamedEdge{V}}
global function _ITensorNetwork(data_graph::DataGraph)
return new{vertextype(data_graph)}(data_graph)
end
end
#
# Data access
#
data_graph(tn::ITensorNetwork) = getfield(tn, :data_graph)
data_graph_type(TN::Type{<:ITensorNetwork}) = fieldtype(TN, :data_graph)
function DataGraphs.underlying_graph_type(TN::Type{<:ITensorNetwork})
return fieldtype(data_graph_type(TN), :underlying_graph)
end
# Versions taking vertex types.
function ITensorNetwork{V}() where {V}
# TODO: Is there a better way to write this?
# Try using `convert_vertextype`.
new_data_graph_type = data_graph_type(ITensorNetwork{V})
new_underlying_graph_type = underlying_graph_type(new_data_graph_type)
return _ITensorNetwork(new_data_graph_type(new_underlying_graph_type()))
end
function ITensorNetwork{V}(tn::ITensorNetwork) where {V}
# TODO: Is there a better way to write this?
# Try using `convert_vertextype`.
return _ITensorNetwork(DataGraph{V}(data_graph(tn)))
end
function ITensorNetwork{V}(g::NamedGraph) where {V}
# TODO: Is there a better way to write this?
# Try using `convert_vertextype`.
return ITensorNetwork(NamedGraph{V}(g))
end
ITensorNetwork() = ITensorNetwork{Any}()
# Conversion
# TODO: Copy or not?
ITensorNetwork(tn::ITensorNetwork) = copy(tn)
NamedGraphs.convert_vertextype(::Type{V}, tn::ITensorNetwork{V}) where {V} = tn
NamedGraphs.convert_vertextype(V::Type, tn::ITensorNetwork) = ITensorNetwork{V}(tn)
Base.copy(tn::ITensorNetwork) = _ITensorNetwork(copy(data_graph(tn)))
#
# Construction from collections of ITensors
#
function itensors_to_itensornetwork(ts)
g = NamedGraph(collect(eachindex(ts)))
tn = ITensorNetwork(g)
for v in vertices(g)
tn[v] = ts[v]
end
return tn
end
function ITensorNetwork(ts::AbstractVector{ITensor})
return itensors_to_itensornetwork(ts)
end
function ITensorNetwork(ts::AbstractDictionary{<:Any,ITensor})
return itensors_to_itensornetwork(ts)
end
function ITensorNetwork(ts::AbstractDict{<:Any,ITensor})
return itensors_to_itensornetwork(ts)
end
function ITensorNetwork(vs::AbstractVector, ts::AbstractVector{ITensor})
return itensors_to_itensornetwork(Dictionary(vs, ts))
end
function ITensorNetwork(ts::AbstractVector{<:Pair{<:Any,ITensor}})
return itensors_to_itensornetwork(dictionary(ts))
end
# TODO: Decide what this should do, maybe it should factorize?
function ITensorNetwork(t::ITensor)
return itensors_to_itensornetwork([t])
end
#
# Construction from underyling named graph
#
function ITensorNetwork(
eltype::Type, undef::UndefInitializer, graph::AbstractNamedGraph; kwargs...
)
return ITensorNetwork(eltype, undef, IndsNetwork(graph; kwargs...))
end
function ITensorNetwork(f, graph::AbstractNamedGraph; kwargs...)
return ITensorNetwork(f, IndsNetwork(graph; kwargs...))
end
function ITensorNetwork(graph::AbstractNamedGraph; kwargs...)
return ITensorNetwork(IndsNetwork(graph; kwargs...))
end
#
# Construction from underyling simple graph
#
function ITensorNetwork(
eltype::Type, undef::UndefInitializer, graph::AbstractSimpleGraph; kwargs...
)
return ITensorNetwork(eltype, undef, IndsNetwork(graph; kwargs...))
end
function ITensorNetwork(f, graph::AbstractSimpleGraph; kwargs...)
return ITensorNetwork(f, IndsNetwork(graph); kwargs...)
end
function ITensorNetwork(graph::AbstractSimpleGraph; kwargs...)
return ITensorNetwork(IndsNetwork(graph); kwargs...)
end
#
# Construction from IndsNetwork
#
function ITensorNetwork(eltype::Type, undef::UndefInitializer, is::IndsNetwork; kwargs...)
return ITensorNetwork(is; kwargs...) do v
return (inds...) -> ITensor(eltype, undef, inds...)
end
end
function ITensorNetwork(eltype::Type, is::IndsNetwork; kwargs...)
return ITensorNetwork(is; kwargs...) do v
return (inds...) -> ITensor(eltype, inds...)
end
end
function ITensorNetwork(undef::UndefInitializer, is::IndsNetwork; kwargs...)
return ITensorNetwork(is; kwargs...) do v
return (inds...) -> ITensor(undef, inds...)
end
end
function ITensorNetwork(is::IndsNetwork; kwargs...)
return ITensorNetwork(is; kwargs...) do v
return (inds...) -> ITensor(inds...)
end
end
# TODO: Handle `eltype` and `undef` through `generic_state`.
# `inds` are stored in a `NamedTuple`
function generic_state(f, inds::NamedTuple)
return generic_state(f, reduce(vcat, inds.linkinds; init=inds.siteinds))
end
function generic_state(f, inds::Vector)
return f(inds)
end
function generic_state(a::AbstractArray, inds::Vector)
return itensor(a, inds)
end
function generic_state(x::Op, inds::NamedTuple)
# TODO: Figure out what to do if there is more than one site.
if !isempty(inds.siteinds)
@assert length(inds.siteinds) == 2
i = inds.siteinds[findfirst(i -> plev(i) == 0, inds.siteinds)]
@assert i' ∈ inds.siteinds
site_tensors = [op(x.which_op, i)]
else
site_tensors = []
end
link_tensors = [[onehot(i => 1) for i in inds.linkinds[e]] for e in keys(inds.linkinds)]
return contract(reduce(vcat, link_tensors; init=site_tensors))
end
function generic_state(s::AbstractString, inds::NamedTuple)
# TODO: Figure out what to do if there is more than one site.
site_tensors = [state(s, only(inds.siteinds))]
link_tensors = [[onehot(i => 1) for i in inds.linkinds[e]] for e in keys(inds.linkinds)]
return contract(reduce(vcat, link_tensors; init=site_tensors))
end
# TODO: This is similar to `ModelHamiltonians.to_callable`,
# try merging the two.
to_callable(value::Type) = value
to_callable(value::Function) = value
function to_callable(value::AbstractDict)
return Base.Fix1(getindex, value) ∘ keytype(value)
end
function to_callable(value::AbstractDictionary)
return Base.Fix1(getindex, value) ∘ keytype(value)
end
function to_callable(value::AbstractArray{<:Any,N}) where {N}
return Base.Fix1(getindex, value) ∘ CartesianIndex
end
to_callable(value) = Returns(value)
function ITensorNetwork(value, is::IndsNetwork; kwargs...)
return ITensorNetwork(to_callable(value), is; kwargs...)
end
function ITensorNetwork(
elt::Type, f, is::IndsNetwork; link_space=trivial_space(is), kwargs...
)
tn = ITensorNetwork(f, is; kwargs...)
for v in vertices(tn)
# TODO: Ideally we would use broadcasting, i.e. `elt.(tn[v])`,
# but that doesn't work right now on ITensors.
tn[v] = ITensors.convert_eltype(elt, tn[v])
end
return tn
end
function ITensorNetwork(
itensor_constructor::Function, is::IndsNetwork; link_space=trivial_space(is), kwargs...
)
is = insert_linkinds(is; link_space)
tn = ITensorNetwork{vertextype(is)}()
for v in vertices(is)
add_vertex!(tn, v)
end
for e in edges(is)
add_edge!(tn, e)
end
for v in vertices(tn)
# TODO: Replace with `is[v]` once `getindex(::IndsNetwork, ...)` is smarter.
siteinds = get(is, v, Index[])
edges = [edgetype(is)(v, nv) for nv in neighbors(is, v)]
linkinds = map(e -> is[e], Indices(edges))
tensor_v = generic_state(itensor_constructor(v), (; siteinds, linkinds))
setindex_preserve_graph!(tn, tensor_v, v)
end
return tn
end
ITensorNetwork(itns::Vector{ITensorNetwork}) = reduce(⊗, itns)
# TODO: Use `vertex_data` here?
function eachtensor(ψ::ITensorNetwork)
# This type declaration is needed to narrow
# the element type of the resulting `Dictionary`,
# raise and issue with `Dictionaries.jl`.
return map(v -> ψ[v]::ITensor, vertices(ψ))
end