-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathddpg.py
434 lines (379 loc) · 18.6 KB
/
ddpg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
import gym
import pybullet_envs
import torch
import numpy as np
import time
import argparse
import os
import imageio
from Algorithms.utils import get_actor_critic_module, sanitise_state_dict
from Algorithms.ddpg.replay_buffer import ReplayBuffer
from Logger.logger import Logger
from copy import deepcopy
from torch.optim import Adam
from tqdm import tqdm
from torch.utils.tensorboard import SummaryWriter
class DDPG:
def __init__(self, env_fn, save_dir, ac_kwargs=dict(), seed=0, tensorboard_logdir = None,
replay_size=int(1e6), gamma=0.99,
tau=0.995, pi_lr=1e-3, q_lr=1e-3, batch_size=100, start_steps=10000,
update_after=1000, update_every=50, act_noise=0.1, num_test_episodes=10,
max_ep_len=1000, logger_kwargs=dict(), save_freq=1, ngpu=1):
'''
Deep Deterministic Policy Gradients (DDPG)
Args:
env_fn: function to create the gym environment
save_dir: path to save directory
actor_critic: Class for the actor-critic pytorch module
ac_kwargs (dict): any keyword argument for the actor_critic
(1) hidden_sizes=(256, 256)
(2) activation=nn.ReLU
(3) device='cpu'
seed (int): seed for random generators
replay_size (int): Maximum length of replay buffer.
gamma (float): Discount factor. (Always between 0 and 1.)
tau (float): Interpolation factor in polyak averaging for target
networks.
pi_lr (float): Learning rate for policy.
q_lr (float): Learning rate for Q-networks.
batch_size (int): Minibatch size for SGD.
start_steps (int): Number of steps for uniform-random action selection,
before running real policy. Helps exploration.
update_after (int): Number of env interactions to collect before
starting to do gradient descent updates. Ensures replay buffer
is full enough for useful updates.
update_every (int): Number of env interactions that should elapse
between gradient descent updates. Note: Regardless of how long
you wait between updates, the ratio of env steps to gradient steps
is locked to 1.
act_noise (float): Stddev for Gaussian exploration noise added to
policy at training time. (At test time, no noise is added.)
num_test_episodes (int): Number of episodes to test the deterministic
policy at the end of each epoch.
max_ep_len (int): Maximum length of trajectory / episode / rollout.
logger_kwargs (dict): Keyword args for Logger.
(1) output_dir = None
(2) output_fname = 'progress.pickle'
save_freq (int): How often (in terms of gap between episodes) to save
the current policy and value function.
'''
# logger stuff
self.logger = Logger(**logger_kwargs)
torch.manual_seed(seed)
np.random.seed(seed)
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.env = env_fn()
# Action Limit for clamping
self.act_limit = self.env.action_space.high[0]
# Create actor-critic module
self.ngpu = ngpu
self.actor_critic = get_actor_critic_module(ac_kwargs, 'ddpg')
self.ac_kwargs = ac_kwargs
self.ac = self.actor_critic(self.env.observation_space, self.env.action_space, device=self.device, ngpu=self.ngpu, **ac_kwargs)
self.ac_targ = deepcopy(self.ac)
# Freeze target networks with respect to optimizers
for p in self.ac_targ.parameters():
p.requires_grad = False
# Experience buffer
self.replay_size = replay_size
self.replay_buffer = ReplayBuffer(int(replay_size))
# Set up optimizers for actor and critic
self.pi_lr = pi_lr
self.q_lr = q_lr
self.pi_optimizer = Adam(self.ac.pi.parameters(), lr=pi_lr)
self.q_optimizer = Adam(self.ac.q.parameters(), lr=q_lr)
self.gamma = gamma
self.tau = tau
self.act_noise = act_noise
# self.obs_dim = self.env.observation_space.shape[0]
self.act_dim = self.env.action_space.shape[0]
self.num_test_episodes = num_test_episodes
self.max_ep_len = self.env.spec.max_episode_steps if self.env.spec.max_episode_steps is not None else max_ep_len
self.start_steps = start_steps
self.update_after = update_after
self.update_every = update_every
self.batch_size = batch_size
self.save_freq = save_freq
self.best_mean_reward = -np.inf
self.save_dir = save_dir
self.tensorboard_logdir = tensorboard_logdir
def reinit_network(self):
'''
Re-initialize network weights and optimizers for a fresh agent to train
'''
# Create actor-critic module
self.best_mean_reward = -np.inf
self.ac = self.actor_critic(self.env.observation_space, self.env.action_space, device=self.device, ngpu=self.ngpu, **self.ac_kwargs)
self.ac_targ = deepcopy(self.ac)
# Freeze target networks with respect to optimizers
for p in self.ac_targ.parameters():
p.requires_grad = False
# Experience buffer
self.replay_buffer = ReplayBuffer(int(self.replay_size))
# Set up optimizers for actor and critic
self.pi_optimizer = Adam(self.ac.pi.parameters(), lr=self.pi_lr)
self.q_optimizer = Adam(self.ac.q.parameters(), lr=self.q_lr)
def update(self, experiences, timestep):
'''
Do gradient updates for actor-critic models
Args:
experiences: sampled s, a, r, s', terminals from replay buffer.
'''
# Get states, action, rewards, next_states, terminals from experiences
self.ac.train()
self.ac_targ.train()
states, actions, rewards, next_states, terminals = experiences
states = states.to(self.device)
next_states = next_states.to(self.device)
actions = actions.to(self.device)
rewards = rewards.to(self.device)
terminals = terminals.to(self.device)
# --------------------- Optimizing critic ---------------------
self.q_optimizer.zero_grad()
# calculating q loss
Q_values = self.ac.q(states, actions)
with torch.no_grad():
next_actions = self.ac_targ.pi(next_states)
next_Q = self.ac_targ.q(next_states, next_actions) * (1-terminals)
Qprime = rewards + (self.gamma * next_Q)
# MSE loss
loss_q = ((Q_values-Qprime)**2).mean()
loss_info = dict(Qvals=Q_values.detach().cpu().numpy().tolist())
loss_q.backward()
self.q_optimizer.step()
# --------------------- Optimizing actor ---------------------
# Freeze Q-network so no computational resources is wasted in computing gradients
for p in self.ac.q.parameters():
p.requires_grad = False
self.pi_optimizer.zero_grad()
loss_pi = -self.ac.q(states, self.ac.pi(states)).mean()
loss_pi.backward()
self.pi_optimizer.step()
# Unfreeze Q-network for next update step
for p in self.ac.q.parameters():
p.requires_grad = True
# Record loss q and loss pi and qvals in the form of loss_info
self.logger.store(LossQ=loss_q.item(), LossPi=loss_pi.item(), **loss_info)
self.tensorboard_logger.add_scalar("loss/q_loss", loss_q.item(), timestep)
self.tensorboard_logger.add_scalar("loss/pi_loss", loss_pi.item(), timestep)
# update target networks
with torch.no_grad():
for p, p_targ in zip(self.ac.parameters(), self.ac_targ.parameters()):
p_targ.data.mul_(self.tau)
p_targ.data.add_((1-self.tau)*p.data)
def get_action(self, obs, noise_scale):
'''
Input the current observation into the actor network to calculate action to take.
Args:
obs (numpy ndarray): Current state of the environment. Only 1 state, not a batch of states
noise_scale (float): Stddev for Gaussian exploration noise
Return:
Action (numpy ndarray): Scaled action that is clipped to environment's action limits
'''
self.ac.eval()
self.ac_targ.eval()
obs = torch.as_tensor([obs], dtype=torch.float32).to(self.device)
action = self.ac.act(obs).squeeze()
if len(action.shape) == 0:
action = np.array([action])
action += noise_scale*np.random.randn(self.act_dim)
return np.clip(action, -self.act_limit, self.act_limit)
def evaluate_agent(self):
'''
Run the current model through test environment for <self.num_test_episodes> episodes
without noise exploration, and store the episode return and length into the logger.
Used to measure how well the agent is doing.
'''
self.env.training=False
for i in range(self.num_test_episodes):
state, done, ep_ret, ep_len = self.env.reset(), False, 0, 0
while not (done or (ep_len==self.max_ep_len)):
# Take deterministic action with 0 noise added
state, reward, done, _ = self.env.step(self.get_action(state, 0))
ep_ret += reward
ep_len += 1
self.logger.store(TestEpRet=ep_ret, TestEpLen=ep_len)
self.env.training=True
def save_weights(self, best=False, fname=None):
'''
save the pytorch model weights of ac and ac_targ
as well as pickling the environment to preserve any env parameters like normalisation params
Args:
best(bool): if true, save it as best.pth
fname(string): if specified, save it as <fname>
'''
if fname is not None:
_fname = fname
elif best:
_fname = "best.pth"
else:
_fname = "model_weights.pth"
print('saving checkpoint...')
checkpoint = {
'ac': self.ac.state_dict(),
'ac_target': self.ac_targ.state_dict(),
'pi_optimizer': self.pi_optimizer.state_dict(),
'q_optimizer': self.q_optimizer.state_dict()
}
torch.save(checkpoint, os.path.join(self.save_dir, _fname))
self.replay_buffer.save(os.path.join(self.save_dir, "replay_buffer.pickle"))
self.env.save(os.path.join(self.save_dir, "env.json"))
print(f"checkpoint saved at {os.path.join(self.save_dir, _fname)}")
def load_weights(self, best=True, load_buffer=True):
'''
Load the model weights and replay buffer from self.save_dir
Args:
best (bool): If True, save from the weights file with the best mean episode reward
load_buffer (bool): If True, load the replay buffer from the pickled file
'''
if best:
fname = "best.pth"
else:
fname = "model_weights.pth"
checkpoint_path = os.path.join(self.save_dir, fname)
if os.path.isfile(checkpoint_path):
if load_buffer:
self.replay_buffer.load(os.path.join(self.save_dir, "replay_buffer.pickle"))
key = 'cuda' if torch.cuda.is_available() else 'cpu'
checkpoint = torch.load(checkpoint_path, map_location=key)
self.ac.load_state_dict(sanitise_state_dict(checkpoint['ac'], self.ngpu>1))
self.ac_targ.load_state_dict(sanitise_state_dict(checkpoint['ac_target'], self.ngpu>1))
self.pi_optimizer.load_state_dict(sanitise_state_dict(checkpoint['pi_optimizer'], self.ngpu>1))
self.q_optimizer.load_state_dict(sanitise_state_dict(checkpoint['q_optimizer'], self.ngpu>1))
env_path = os.path.join(self.save_dir, "env.json")
if os.path.isfile(env_path):
self.env = self.env.load(env_path)
print("Environment loaded")
print('checkpoint loaded at {}'.format(checkpoint_path))
else:
raise OSError("Checkpoint file not found.")
def learn_one_trial(self, timesteps, trial_num):
state, ep_ret, ep_len = self.env.reset(), 0, 0
episode = 0
for timestep in tqdm(range(timesteps)):
# Until start_steps have elapsed, sample random actions from environment
# to encourage more exploration, sample from policy network after that
if timestep<=self.start_steps:
action = self.env.action_space.sample()
else:
action = self.get_action(state, self.act_noise)
# step the environment
next_state, reward, done, _ = self.env.step(action)
ep_ret += reward
ep_len += 1
# ignore the 'done' signal if it just times out after timestep>max_timesteps
done = False if ep_len==self.max_ep_len else done
# store experience to replay buffer
self.replay_buffer.append(state, action, reward, next_state, done)
# Critical step to update current state
state = next_state
# Update handling
if timestep>=self.update_after and (timestep+1)%self.update_every==0:
for _ in range(self.update_every):
experiences = self.replay_buffer.sample(self.batch_size)
self.update(experiences, timestep)
# End of trajectory/episode handling
if done or (ep_len==self.max_ep_len):
self.logger.store(EpRet=ep_ret, EpLen=ep_len)
self.tensorboard_logger.add_scalar('episodic_return_train', ep_ret, timestep)
self.tensorboard_logger.flush()
# print(f"Episode reward: {ep_ret} | Episode Length: {ep_len}")
state, ep_ret, ep_len = self.env.reset(), 0, 0
episode += 1
# Retrieve training reward
x, y = self.logger.load_results(["EpLen", "EpRet"])
if len(x) > 0:
# Mean training reward over the last 50 episodes
mean_reward = np.mean(y[-50:])
# New best model
if mean_reward > self.best_mean_reward:
print("Num timesteps: {}".format(timestep))
print("Best mean reward: {:.2f} - Last mean reward per episode: {:.2f}".format(self.best_mean_reward, mean_reward))
self.best_mean_reward = mean_reward
self.save_weights(fname=f"best_{trial_num}.pth")
if self.env.spec.reward_threshold is not None and self.best_mean_reward >= self.env.spec.reward_threshold:
print("Solved Environment, stopping iteration...")
return
# self.evaluate_agent()
self.logger.dump()
if self.save_freq > 0 and timestep % self.save_freq == 0:
self.save_weights(fname=f"latest_{trial_num}.pth")
def learn(self, timesteps, num_trials=1):
'''
Function to learn using DDPG.
Args:
timesteps (int): number of timesteps to train for
'''
self.env.training=True
best_reward_trial = -np.inf
for trial in range(num_trials):
self.tensorboard_logger = SummaryWriter(log_dir=os.path.join(self.tensorboard_logdir, f'{trial+1}'))
self.learn_one_trial(timesteps, trial+1)
if self.best_mean_reward > best_reward_trial:
best_reward_trial = self.best_mean_reward
self.save_weights(best=True)
self.logger.reset()
self.reinit_network()
print()
print(f"Trial {trial+1}/{num_trials} complete")
def test(self, timesteps=None, render=False, record=False):
'''
Test the agent in the environment
Args:
render (bool): If true, render the image out for user to see in real time
record (bool): If true, save the recording into a .gif file at the end of episode
timesteps (int): number of timesteps to run the environment for. Default None will run to completion
Return:
Ep_Ret (int): Total reward from the episode
Ep_Len (int): Total length of the episode in terms of timesteps
'''
self.env.training=False
if render:
self.env.render('human')
state, done, ep_ret, ep_len = self.env.reset(), False, 0, 0
img = []
if record:
img.append(self.env.render('rgb_array'))
if timesteps is not None:
for i in range(timesteps):
# Take deterministic action with 0 noise added
state, reward, done, _ = self.env.step(self.get_action(state, 0))
if record:
img.append(self.env.render('rgb_array'))
else:
self.env.render()
ep_ret += reward
ep_len += 1
else:
while not (done or (ep_len==self.max_ep_len)):
# Take deterministic action with 0 noise added
state, reward, done, _ = self.env.step(self.get_action(state, 0))
if record:
img.append(self.env.render('rgb_array'))
else:
self.env.render()
ep_ret += reward
ep_len += 1
if record:
imageio.mimsave(f'{os.path.join(self.save_dir, "recording.gif")}', [np.array(img) for i, img in enumerate(img) if i%2 == 0], fps=29)
self.env.training=True
return ep_ret, ep_len
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('--env', type=str, default='CartPoleContinuousBulletEnv-v0', help='environment_id')
parser.add_argument('--config_path', type=str, default='ddpg_config.json', help='path to config.json')
parser.add_argument('--timesteps', type=int, required=True, help='specify number of timesteps to train for')
parser.add_argument('--seed', type=int, default=0, help='seed number for reproducibility')
return parser.parse_args()
def main():
args = parse_arguments()
save_dir = os.path.join("Model_Weights", args.env, "ddpg")
logger_kwargs = {
"output_dir": save_dir
}
with open(args.config_path) as f:
model_kwargs = json.load(f)
model = DDPG(lambda: gym.make(args.env), save_dir, seed=args.seed, logger_kwargs=logger_kwargs, **model_kwargs)
model.learn(args.timesteps)
if __name__ == '__main__':
main()