-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathoc_continuous.py
415 lines (359 loc) · 18.5 KB
/
oc_continuous.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
#######################################################################
# Copyright (C) 2017 Shangtong Zhang(zhangshangtong.cpp@gmail.com) #
# Permission given to modify the code as long as you keep this #
# declaration at the top #
#######################################################################
import os
import torch
import torch.nn as nn
import numpy as np
import imageio
from torch.nn import functional as F
from Algorithms.body import VAE, ConvBody, FCBody, DummyBody
from Algorithms.option_critic.buffer import Storage
from Algorithms.utils import to_tensor, to_np, sanitise_state_dict,LinearSchedule
from torch.optim import Adam, RMSprop
from Algorithms.option_critic.core import OptionGaussianActorCriticNet
from torch.utils.tensorboard import SummaryWriter
from Logger.logger import Logger
from tqdm import tqdm
from copy import deepcopy
class Option_Critic:
def __init__(self, env_fn, save_dir, tensorboard_logdir = None, optimizer_class = RMSprop, weight_decay=0,
oc_kwargs=dict(), logger_kwargs=dict(), eps_start=1.0, eps_end=0.1, eps_decay=1e4, lr=1e-3,
gamma=0.99, rollout_length=2048, beta_reg=0.01, entropy_weight=0.01, gradient_clip=5,
target_network_update_freq=200, max_ep_len=2000, save_freq=200, seed=0, **kwargs):
self.seed = seed
torch.manual_seed(seed)
np.random.seed(seed)
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.lr = lr
self.env_fn = env_fn
self.env = env_fn()
self.oc_kwargs = oc_kwargs
self.network_fn = self.get_network_fn(self.oc_kwargs)
self.network = self.network_fn().to(self.device)
self.target_network = deepcopy(self.network)
# Freeze target networks with respect to optimizers
for p in self.target_network.parameters():
p.requires_grad = False
# self.target_network = self.network_fn().to(self.device)
self.optimizer_class = optimizer_class
self.weight_decay = weight_decay
self.optimizer = optimizer_class(self.network.parameters(), self.lr, weight_decay=self.weight_decay)
# self.target_network.load_state_dict(self.network.state_dict())
self.eps_start = eps_start; self.eps_end = eps_end; self.eps_decay = eps_decay
self.eps_schedule = LinearSchedule(eps_start, eps_end, eps_decay)
self.gamma = gamma
self.rollout_length = rollout_length
self.num_options = oc_kwargs['num_options']
self.beta_reg = beta_reg
self.entropy_weight = entropy_weight
self.gradient_clip = gradient_clip
self.target_network_update_freq = target_network_update_freq
self.max_ep_len = max_ep_len
self.save_freq = save_freq
self.save_dir = save_dir
self.logger = Logger(**logger_kwargs)
self.tensorboard_logdir = tensorboard_logdir
# self.tensorboard_logger = SummaryWriter(log_dir=tensorboard_logdir)
self.is_initial_states = to_tensor(np.ones((1))).byte()
self.prev_options = self.is_initial_states.clone().long().to(self.device)
self.best_mean_reward = -np.inf
def get_network_fn(self, oc_kwargs):
activation=nn.ReLU
gate = F.relu
obs_space = self.env.observation_space.shape
hidden_units = oc_kwargs['hidden_sizes']
act_dim = self.env.action_space.shape[0]
self.continuous = True
if len(obs_space) > 1:
# image observations
phi_body = VAE(load_path =oc_kwargs['vae_weights_path'], device=self.device) if oc_kwargs['model_type'].lower() == 'vae' \
else ConvBody(obs_space, oc_kwargs['conv_layer_sizes'], activation, batchnorm=False)
state_dim = phi_body.latent_dim
else:
state_dim = obs_space[0]
phi_body = DummyBody(state_dim)
network_fn = lambda: OptionGaussianActorCriticNet(
state_dim, act_dim,
num_options=oc_kwargs['num_options'],
phi_body=phi_body,
critic_body=FCBody(state_dim, hidden_units=hidden_units, gate=gate),
option_body_fn=lambda: FCBody(state_dim, hidden_units=hidden_units, gate=gate),
device=self.device
)
return network_fn
def update(self, storage, states, timestep):
with torch.no_grad():
prediction = self.target_network(states)
storage.placeholder() # create the beta_adv attribute inside storage to be [None]*rollout_length
betas = prediction['beta'].squeeze()[self.prev_options]
# intra-policy update
ret = (1 - betas) * prediction['q_o'][0, self.prev_options] + \
betas * torch.max(prediction['q_o'], dim=-1)[0]
ret = ret.unsqueeze(-1)
for i in reversed(range(self.rollout_length)):
# calculate option value and advantage value
ret = storage.r[i] + self.gamma * storage.m[i] * ret
adv = ret - storage.q_o[i].gather(1, storage.o[i])
storage.ret[i] = ret
storage.adv[i] = adv
# state value function at the current state is calculated as the maximum state-option value * (1-eps) + mean of state-option vale * (eps)
# if eps=0 (always greedy option), then state value is just the maximum state-option value, as agent will always pick the option that gives maximum value
v = storage.q_o[i].max(dim=-1, keepdim=True)[0] * (1 - storage.eps[i]) + storage.q_o[i].mean(-1).unsqueeze(-1) * storage.eps[i]
q = storage.q_o[i].gather(1, storage.prev_o[i])
storage.beta_adv[i] = q - v + self.beta_reg
q, beta, log_pi, ret, adv, beta_adv, ent, option, action, initial_states, prev_o = \
storage.cat(['q_o', 'beta', 'log_pi', 'ret', 'adv', 'beta_adv', 'ent', 'o', 'a', 'init', 'prev_o'])
# calculate loss function
q_loss = (q.gather(1, option) - ret.detach()).pow(2).mul(0.5).mean()
pi_loss = -(log_pi * adv.detach()) - self.entropy_weight * ent
pi_loss = pi_loss.mean()
beta_loss = (beta.gather(1, prev_o) * beta_adv.detach() * (1 - initial_states)).mean()
# logging all losses
self.logger.store(q_loss=q_loss.item(), pi_loss=pi_loss.item(), beta_loss=beta_loss.item())
self.tensorboard_logger.add_scalar("loss/q_loss", q_loss.item(), timestep)
self.tensorboard_logger.add_scalar("loss/pi_loss", pi_loss.item(), timestep)
self.tensorboard_logger.add_scalar("loss/beta_loss", beta_loss.item(), timestep)
# backward and train
self.optimizer.zero_grad()
(pi_loss + q_loss + beta_loss).backward()
nn.utils.clip_grad_norm_(self.network.parameters(), self.gradient_clip)
self.optimizer.step()
def save_weights(self, best=False, fname=None):
'''
save the pytorch model weights of ac and ac_targ
as well as pickling the environment to preserve any env parameters like normalisation params
Args:
best(bool): if true, save it as best.pth
fname(string): if specified, save it as <fname>
'''
if fname is not None:
_fname = fname
elif best:
_fname = "best.pth"
else:
_fname = "model_weights.pth"
print('saving checkpoint...')
checkpoint = {
'oc': self.network.state_dict(),
'oc_target': self.target_network.state_dict()
}
torch.save(checkpoint, os.path.join(self.save_dir, _fname))
self.env.save(os.path.join(self.save_dir, "env.json"))
print(f"checkpoint saved at {os.path.join(self.save_dir, _fname)}")
def load_weights(self, best=True, fname=None):
'''
Load the model weights and replay buffer from self.save_dir
Args:
best (bool): If True, save from the weights file with the best mean episode reward
load_buffer (bool): If True, load the replay buffer from the pickled file
'''
if fname is not None:
_fname = fname
elif best:
_fname = "best.pth"
else:
_fname = "model_weights.pth"
checkpoint_path = os.path.join(self.save_dir, _fname)
if os.path.isfile(checkpoint_path):
checkpoint = torch.load(checkpoint_path, map_location=self.device)
self.network.load_state_dict(sanitise_state_dict(checkpoint['oc']))
self.target_network.load_state_dict(sanitise_state_dict(checkpoint['oc_target']))
env_path = os.path.join(self.save_dir, "env.json")
if os.path.isfile(env_path):
self.env = self.env.load(env_path)
print("Environment loaded")
print('checkpoint loaded at {}'.format(checkpoint_path))
else:
raise OSError(f"{checkpoint_path}: Checkpoint file not found.")
def reinit_network(self):
self.seed += 1
torch.manual_seed(self.seed)
np.random.seed(self.seed)
self.best_mean_reward = -np.inf
self.network = self.network_fn().to(self.device)
# self.target_network = self.network_fn().to(self.device)
self.optimizer = self.optimizer_class(self.network.parameters(), self.lr, weight_decay=self.weight_decay)
self.target_network = deepcopy(self.network)
# Freeze target networks with respect to optimizers
for p in self.target_network.parameters():
p.requires_grad = False
# self.target_network.load_state_dict(self.network.state_dict())
self.eps_schedule = LinearSchedule(self.eps_start, self.eps_end, self.eps_decay)
def sample_option(self, prediction, epsilon, prev_option, is_intial_states):
with torch.no_grad():
# get q value
q_option = prediction['q_o']
pi_option = torch.zeros_like(q_option).add(epsilon / q_option.size(1))
# greedy policy
greedy_option = q_option.argmax(dim=-1, keepdim=True)
prob = 1 - epsilon + epsilon / q_option.size(1)
prob = torch.zeros_like(pi_option).add(prob)
pi_option.scatter_(1, greedy_option, prob)
mask = torch.zeros_like(q_option)
mask[:, prev_option] = 1
beta = prediction['beta']
pi_hat_option = (1 - beta) * mask + beta * pi_option
dist = torch.distributions.Categorical(probs=pi_option)
options = dist.sample()
dist = torch.distributions.Categorical(probs=pi_hat_option)
options_hat = dist.sample()
options = torch.where(is_intial_states.to(self.device), options, options_hat)
return options
def record_online_return(self, ep_ret, timestep, ep_len):
self.tensorboard_logger.add_scalar('episodic_return_train', ep_ret, timestep)
self.logger.store(EpRet=ep_ret, EpLen=ep_len)
self.logger.dump()
self.tensorboard_logger.flush()
# print(f"episode return: {ep_ret}")
def learn_one_trial(self, num_timesteps, trial_num=1):
self.states, ep_ret, ep_len = self.env.reset(), 0, 0
storage = Storage(self.rollout_length, ['beta', 'o', 'beta_adv', 'prev_o', 'init', 'eps'])
for timestep in tqdm(range(1, num_timesteps+1)):
prediction = self.network(self.states)
epsilon = self.eps_schedule()
# select option
options = self.sample_option(prediction, epsilon, self.prev_options, self.is_initial_states)
# Gaussian policy
mean = prediction['mean'][0, options]
std = prediction['std'][0, options]
dist = torch.distributions.Normal(mean, std)
# select action
actions = dist.sample()
# entropy
log_pi = dist.log_prob(actions).sum(-1).unsqueeze(-1)
entropy = dist.entropy().sum(-1).unsqueeze(-1)
next_states, rewards, terminals, _ = self.env.step(to_np(actions[0]))
ep_ret += rewards
ep_len += 1
# end of episode handling
if terminals or ep_len == self.max_ep_len:
next_states = self.env.reset()
self.record_online_return(ep_ret, timestep, ep_len)
ep_ret, ep_len = 0, 0
# Retrieve training reward
x, y = self.logger.load_results(["EpLen", "EpRet"])
if len(x) > 0:
# Mean training reward over the last 50 episodes
mean_reward = np.mean(y[-50:])
# New best model
if mean_reward > self.best_mean_reward:
print("Num timesteps: {}".format(timestep))
print("Best mean reward: {:.2f} - Last mean reward per episode: {:.2f}".format(self.best_mean_reward, mean_reward))
self.best_mean_reward = mean_reward
self.save_weights(fname=f"best_{trial_num}.pth")
if self.env.spec.reward_threshold is not None and self.best_mean_reward >= self.env.spec.reward_threshold:
print("Solved Environment, stopping iteration...")
return
storage.add(prediction)
storage.add({'r': to_tensor(rewards).to(self.device).unsqueeze(-1),
'm': to_tensor(1 - terminals).to(self.device).unsqueeze(-1),
'o': options.unsqueeze(-1),
'prev_o': self.prev_options.unsqueeze(-1),
'ent': entropy,
'a': actions.unsqueeze(-1),
'init': self.is_initial_states.unsqueeze(-1).to(self.device).float(),
'log_pi': log_pi,
'eps': epsilon})
self.is_initial_states = to_tensor(terminals).unsqueeze(-1).byte()
self.prev_options = options
self.states = next_states
if timestep % self.target_network_update_freq == 0:
self.target_network.load_state_dict(self.network.state_dict())
if timestep%self.rollout_length==0:
self.update(storage, self.states, timestep)
storage = Storage(self.rollout_length, ['beta', 'o', 'beta_adv', 'prev_o', 'init', 'eps'])
if self.save_freq > 0 and timestep % self.save_freq == 0:
self.save_weights(fname=f"latest_{trial_num}.pth")
def learn(self, timesteps, num_trials=1):
'''
Function to learn using DDPG.
Args:
timesteps (int): number of timesteps to train for
'''
self.env.training=True
self.network.train()
self.target_network.train()
best_reward_trial = -np.inf
for trial in range(num_trials):
self.tensorboard_logger = SummaryWriter(log_dir=os.path.join(self.tensorboard_logdir, f'{trial+1}'))
self.learn_one_trial(timesteps, trial+1)
if self.best_mean_reward > best_reward_trial:
best_reward_trial = self.best_mean_reward
self.save_weights(best=True)
self.logger.reset()
self.reinit_network()
print()
print(f"Trial {trial+1}/{num_trials} complete")
def test(self, timesteps=None, render=False, record=False):
'''
Test the agent in the environment
Args:
render (bool): If true, render the image out for user to see in real time
record (bool): If true, save the recording into a .gif file at the end of episode
timesteps (int): number of timesteps to run the environment for. Default None will run to completion
Return:
Ep_Ret (int): Total reward from the episode
Ep_Len (int): Total length of the episode in terms of timesteps
'''
self.env.training=False
self.network.eval(); self.target_network.eval()
if render:
self.env.render('human')
states, terminals, ep_ret, ep_len = self.env.reset(), False, 0, 0
is_initial_states = to_tensor(np.ones((1))).byte().to(self.device)
prev_options = is_initial_states.clone().long().to(self.device)
epsilon = 0.0
img = []
if record:
img.append(self.env.render('rgb_array'))
if timesteps is not None:
for i in tqdm(range(timesteps)):
# select option
prediction = self.network(states)
options = self.sample_option(prediction, epsilon, prev_options, is_initial_states)
# Gaussian policy
mean = prediction['mean'][0, options]
std = prediction['std'][0, options]
dist = torch.distributions.Normal(mean, std)
# select action
actions = mean
next_states, rewards, terminals, _ = self.env.step(to_np(actions[0]))
is_initial_states = to_tensor(terminals).unsqueeze(-1).byte()
prev_options = options
states = next_states
if record:
img.append(self.env.render('rgb_array'))
else:
self.env.render()
ep_ret += rewards
ep_len += 1
# if terminals:
# break
else:
while not (terminals or (ep_len==self.max_ep_len)):
# select option
prediction = self.network(states)
options = self.sample_option(prediction, epsilon, prev_options, is_initial_states)
# Gaussian policy
mean = prediction['mean'][0, options]
std = prediction['std'][0, options]
dist = torch.distributions.Normal(mean, std)
# select action
actions = mean
next_states, rewards, terminals, _ = self.env.step(to_np(actions[0]))
is_initial_states = to_tensor(terminals).unsqueeze(-1).byte()
prev_options = options
states = next_states
if record:
img.append(self.env.render('rgb_array'))
else:
self.env.render()
ep_ret += rewards
ep_len += 1
if record:
imageio.mimsave(f'{os.path.join(self.save_dir, "recording.gif")}', [np.array(img) for i, img in enumerate(img) if i%2 == 0], fps=29)
self.env.training=True
return ep_ret, ep_len