-
Notifications
You must be signed in to change notification settings - Fork 146
/
Copy pathfile.jl
957 lines (911 loc) · 45.5 KB
/
file.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
# a Row "view" type for iterating `CSV.File`
struct Row <: Tables.AbstractRow
names::Vector{Symbol}
columns::Vector{Column}
lookup::Dict{Symbol, Column}
row::Int
end
getnames(r::Row) = getfield(r, :names)
getcolumn(r::Row, col::Int) = getfield(r, :columns)[col].column
getcolumn(r::Row, col::Symbol) = getfield(r, :lookup)[col].column
getrow(r::Row) = getfield(r, :row)
Tables.columnnames(r::Row) = getnames(r)
@inline function Tables.getcolumn(row::Row, ::Type{T}, i::Int, nm::Symbol) where {T}
column = getcolumn(row, i)
@inbounds x = column[getrow(row)]
return x
end
@inline function Tables.getcolumn(row::Row, col::Symbol)
column = getcolumn(row, col)
@inbounds x = column[getrow(row)]
return x
end
@inline function Tables.getcolumn(row::Row, col::Int)
column = getcolumn(row, col)
@inbounds x = column[getrow(row)]
return x
end
"""
CSV.File(input; kwargs...) => CSV.File
Read a UTF-8 CSV input and return a `CSV.File` object, which is like a lightweight table/dataframe, allowing dot-access to columns
and iterating rows. Satisfies the Tables.jl interface, so can be passed to any valid sink, yet to avoid unnecessary copies of data,
use `CSV.read(input, sink; kwargs...)` instead if the `CSV.File` intermediate object isn't needed.
The [`input`](@ref input) argument can be one of:
* filename given as a string or FilePaths.jl type
* a `Vector{UInt8}` or `SubArray{UInt8, 1, Vector{UInt8}}` byte buffer
* a `CodeUnits` object, which wraps a `String`, like `codeunits(str)`
* a csv-formatted string can also be passed like `IOBuffer(str)`
* a `Cmd` or other `IO`
* a gzipped file (or gzipped data in any of the above), which will automatically be decompressed for parsing
* a `Vector` of any of the above, which will parse and vertically concatenate each source, returning a single, "long" `CSV.File`
To read a csv file from a url, use the Downloads.jl stdlib or HTTP.jl package, where the resulting downloaded tempfile or `HTTP.Response` body can be passed like:
```julia
using Downloads, CSV
f = CSV.File(Downloads.download(url))
# or
using HTTP, CSV
f = CSV.File(HTTP.get(url).body)
```
Opens the file or files and uses passed arguments to detect the number of columns and column types, unless column types are provided
manually via the `types` keyword argument. Note that passing column types manually can slightly increase performance
for each column type provided (column types can be given as a `Vector` for all columns, or specified per column via
name or index in a `Dict`).
When a `Vector` of inputs is provided, the column names and types of each separate file/input must match to be vertically concatenated. Separate threads will
be used to parse each input, which will each parse their input using just the single thread. The results of all threads are then vertically concatenated using
`ChainedVector`s to lazily concatenate each thread's columns.
For text encodings other than UTF-8, load the [StringEncodings.jl](https://github.com/JuliaStrings/StringEncodings.jl)
package and call e.g. `CSV.File(open(read, input, enc"ISO-8859-1"))`.
The returned `CSV.File` object supports the [Tables.jl](https://github.com/JuliaData/Tables.jl) interface
and can iterate `CSV.Row`s. `CSV.Row` supports `propertynames` and `getproperty` to access individual row values. `CSV.File`
also supports entire column access like a `DataFrame` via direct property access on the file object, like `f = CSV.File(file); f.col1`.
Or by getindex access with column names, like `f[:col1]` or `f["col1"]`. The returned columns are `AbstractArray` subtypes, including:
`SentinelVector` (for integers), regular `Vector`, `PooledVector` for pooled columns, `MissingVector` for columns of all `missing` values,
`PosLenStringVector` when `stringtype=PosLenString` is passed, and `ChainedVector` will chain one of the previous array types together for
data inputs that use multiple threads to parse (each thread parses a single "chain" of the input).
Note that duplicate column names will be detected and adjusted to ensure uniqueness (duplicate column name `a` will become `a_1`).
For example, one could iterate over a csv file with column names `a`, `b`, and `c` by doing:
```julia
for row in CSV.File(file)
println("a=\$(row.a), b=\$(row.b), c=\$(row.c)")
end
```
By supporting the Tables.jl interface, a `CSV.File` can also be a table input to any other table sink function. Like:
```julia
# materialize a csv file as a DataFrame, copying columns from CSV.File
df = CSV.File(file) |> DataFrame
# to avoid making a copy of parsed columns, use CSV.read
df = CSV.read(file, DataFrame)
# load a csv file directly into an sqlite database table
db = SQLite.DB()
tbl = CSV.File(file) |> SQLite.load!(db, "sqlite_table")
```
$KEYWORD_DOCS
"""
struct File <: AbstractVector{Row}
name::String
names::Vector{Symbol}
types::Vector{Type}
rows::Int
cols::Int
columns::Vector{Column}
lookup::Dict{Symbol, Column}
end
getname(f::File) = getfield(f, :name)
getnames(f::File) = getfield(f, :names)
gettypes(f::File) = getfield(f, :types)
getrows(f::File) = getfield(f, :rows)
getcols(f::File) = getfield(f, :cols)
getcolumns(f::File) = getfield(f, :columns)
getlookup(f::File) = getfield(f, :lookup)
getcolumn(f::File, col::Int) = getfield(f, :columns)[col]
getcolumn(f::File, col::Symbol) = getfield(f, :lookup)[col]
function Base.show(io::IO, f::File)
println(io, "CSV.File(\"$(getname(f))\"):")
println(io, "Size: $(getrows(f)) x $(getcols(f))")
show(io, Tables.schema(f))
end
Base.IndexStyle(::Type{File}) = Base.IndexLinear()
Base.eltype(::File) = Row
Base.size(f::File) = (getrows(f),)
Tables.isrowtable(::Type{File}) = true
Tables.columnaccess(::Type{File}) = true
Tables.schema(f::File) = Tables.Schema(getnames(f), gettypes(f))
Tables.columns(f::File) = f
Tables.columnnames(f::File) = getnames(f)
Base.propertynames(f::File) = getnames(f)
function Base.getproperty(f::File, col::Symbol)
lookup = getfield(f, :lookup)
return haskey(lookup, col) ? lookup[col].column : getfield(f, col)
end
function Base.getindex(f::File, col::Symbol)
lookup = getfield(f, :lookup)
return haskey(lookup, col) ? lookup[col].column : getfield(f, col)
end
Base.getindex(f::File, col::String) = getindex(f, Symbol(col))
Tables.getcolumn(f::File, nm::Symbol) = getcolumn(f, nm).column
Tables.getcolumn(f::File, i::Int) = getcolumn(f, i).column
Base.@propagate_inbounds function Base.getindex(f::File, row::Int)
@boundscheck checkbounds(f, row)
return Row(getnames(f), getcolumns(f), getlookup(f), row)
end
function File(source::ValidSources;
# file options
# header can be a row number, range of rows, or actual string vector
header::Union{Integer, Vector{Symbol}, Vector{String}, AbstractVector{<:Integer}}=1,
normalizenames::Bool=false,
# by default, data starts immediately after header or start of file
datarow::Integer=-1,
skipto::Integer=-1,
footerskip::Integer=0,
transpose::Bool=false,
comment::Union{String, Nothing}=nothing,
ignoreemptyrows::Bool=true,
ignoreemptylines=nothing,
select=nothing,
drop=nothing,
limit::Union{Integer, Nothing}=nothing,
buffer_in_memory::Bool=false,
threaded::Union{Bool, Nothing}=nothing,
ntasks::Union{Nothing, Integer}=nothing,
tasks::Union{Nothing, Integer}=nothing,
rows_to_check::Integer=DEFAULT_ROWS_TO_CHECK,
lines_to_check=nothing,
# parsing options
missingstrings=String[],
missingstring="",
delim::Union{Nothing, Char, String}=nothing,
ignorerepeated::Bool=false,
quoted::Bool=true,
quotechar::Union{UInt8, Char}='"',
openquotechar::Union{UInt8, Char, Nothing}=nothing,
closequotechar::Union{UInt8, Char, Nothing}=nothing,
escapechar::Union{UInt8, Char}='"',
dateformat::Union{String, Dates.DateFormat, Nothing, AbstractDict}=nothing,
dateformats=nothing,
decimal::Union{UInt8, Char}=UInt8('.'),
groupmark::Union{Char, Nothing}=nothing,
truestrings::Union{Vector{String}, Nothing}=TRUE_STRINGS,
falsestrings::Union{Vector{String}, Nothing}=FALSE_STRINGS,
stripwhitespace::Bool=false,
# type options
type=nothing,
types=nothing,
typemap::AbstractDict=IdDict{Type, Type}(),
pool=DEFAULT_POOL,
downcast::Bool=false,
lazystrings::Bool=false,
stringtype::StringTypes=DEFAULT_STRINGTYPE,
strict::Bool=false,
silencewarnings::Bool=false,
maxwarnings::Int=DEFAULT_MAX_WARNINGS,
debug::Bool=false,
parsingdebug::Bool=false,
validate::Bool=true,
)
# header=1;normalizenames=false;datarow=-1;skipto=-1;footerskip=0;transpose=false;comment=nothing;ignoreemptyrows=true;ignoreemptylines=nothing;
# select=nothing;drop=nothing;limit=nothing;threaded=nothing;ntasks=Threads.nthreads();tasks=nothing;rows_to_check=30;lines_to_check=nothing;missingstrings=String[];missingstring="";
# delim=nothing;ignorerepeated=false;quoted=true;quotechar='"';openquotechar=nothing;closequotechar=nothing;escapechar='"';dateformat=nothing;
# dateformats=nothing;decimal=UInt8('.');groupmark=nothing;truestrings=nothing;falsestrings=nothing;type=nothing;types=nothing;typemap=IdDict{Type,Type}();
# pool=CSV.DEFAULT_POOL;downcast=false;lazystrings=false;stringtype=String;strict=false;silencewarnings=false;maxwarnings=100;debug=false;parsingdebug=false;buffer_in_memory=false
# @descend CSV.Context(CSV.Arg(source), CSV.Arg(header), CSV.Arg(normalizenames), CSV.Arg(datarow), CSV.Arg(skipto), CSV.Arg(footerskip), CSV.Arg(transpose), CSV.Arg(comment), CSV.Arg(ignoreemptyrows), CSV.Arg(ignoreemptylines), CSV.Arg(select), CSV.Arg(drop), CSV.Arg(limit), CSV.Arg(buffer_in_memory), CSV.Arg(threaded), CSV.Arg(ntasks), CSV.Arg(tasks), CSV.Arg(rows_to_check), CSV.Arg(lines_to_check), CSV.Arg(missingstrings), CSV.Arg(missingstring), CSV.Arg(delim), CSV.Arg(ignorerepeated), CSV.Arg(quoted), CSV.Arg(quotechar), CSV.Arg(openquotechar), CSV.Arg(closequotechar), CSV.Arg(escapechar), CSV.Arg(dateformat), CSV.Arg(dateformats), CSV.Arg(decimal), CSV.Arg(truestrings), CSV.Arg(falsestrings), CSV.Arg(type), CSV.Arg(types), CSV.Arg(typemap), CSV.Arg(pool), CSV.Arg(downcast), CSV.Arg(lazystrings), CSV.Arg(stringtype), CSV.Arg(strict), CSV.Arg(silencewarnings), CSV.Arg(maxwarnings), CSV.Arg(debug), CSV.Arg(parsingdebug), CSV.Arg(false))
ctx = @refargs Context(source, header, normalizenames, datarow, skipto, footerskip, transpose, comment, ignoreemptyrows, ignoreemptylines, select, drop, limit, buffer_in_memory, threaded, ntasks, tasks, rows_to_check, lines_to_check, missingstrings, missingstring, delim, ignorerepeated, quoted, quotechar, openquotechar, closequotechar, escapechar, dateformat, dateformats, decimal, groupmark, truestrings, falsestrings, stripwhitespace, type, types, typemap, pool, downcast, lazystrings, stringtype, strict, silencewarnings, maxwarnings, debug, parsingdebug, validate, false)
return File(ctx)
end
function File(ctx::Context, @nospecialize(chunking::Bool=false))
@inbounds begin
# we now do our parsing pass over the file, starting at datapos
if ctx.threaded
# multithreaded parsing
rowsguess, ntasks, columns = ctx.rowsguess, ctx.ntasks, ctx.columns
# calculate our guess for how many rows will be parsed by each concurrent parsing task
rowchunkguess = cld(rowsguess, ntasks)
wholecolumnslock = ReentrantLock() # in case columns are widened during parsing
pertaskcolumns = Vector{Vector{Column}}(undef, ntasks)
# initialize each top-level column's lock; used after a task is done parsing its chunk of rows
# and it "checks in" the types it parsed for each column
foreach(col -> col.lock = ReentrantLock(), columns)
rows = zeros(Int, ntasks) # how many rows each parsing task ended up actually parsing
@sync for i = 1:ntasks
@wkspawn multithreadparse($ctx, $pertaskcolumns, $rowchunkguess, $i, $rows, $wholecolumnslock)
# CSV.multithreadparse(ctx, pertaskcolumns, rowchunkguess, i, rows, wholecolumnslock)
end
finalrows = sum(rows)
if ctx.limit < finalrows
finalrows = ctx.limit
# adjust columns according to limit
acc = 0
for i = 1:ntasks
if acc + rows[i] > finalrows
# need to resize this tasks columns down
if finalrows - acc > 0
for col in pertaskcolumns[i]
if isdefined(col, :column)
resize!(col.column, finalrows - acc)
end
end
else
for col in pertaskcolumns[i]
if isdefined(col, :column)
empty!(col.column)
end
end
end
end
acc += rows[i]
end
end
# ok, all the parsing tasks have finished and we've promoted their types w/ the top-level columns
# so now we just need to finish processing each column by making ChainedVectors of the individual columns
# from each task
# quick check that each set of task columns has the right # of columns
for i = 1:ntasks
task_columns = pertaskcolumns[i]
if length(task_columns) < length(columns)
# some other task widened columns that this task didn't likewise detect
for _ = (length(task_columns) + 1):length(columns)
push!(task_columns, Column(Missing, ctx.options))
end
end
end
@sync for (j, col) in enumerate(columns)
@wkspawn multithreadpostparse($ctx, $ntasks, $pertaskcolumns, $rows, $finalrows, $j, $col)
end
else
# single-threaded parsing
columns = ctx.columns
allocate!(columns, ctx.rowsguess)
t = Base.time()
finalrows, pos = parsefilechunk!(ctx, ctx.datapos, ctx.len, ctx.rowsguess, 0, columns, ctx.customtypes)::Tuple{Int, Int}
ctx.debug && println("time for initial parsing: $(Base.time() - t)")
# cleanup our columns if needed
for col in columns
@label processcolumn
if col.type === NeedsTypeDetection
# fill in uninitialized column fields
col.type = Missing
col.column = MissingVector(finalrows)
col.pool = 0.0
end
T = col.anymissing ? Union{col.type, Missing} : col.type
if maybepooled(col) &&
(col.type isa StringTypes || col.columnspecificpool) &&
checkpooled!(T, nothing, col, 0, 1, finalrows, ctx)
# col.column is a PooledArray
elseif col.type === PosLenString
# string col parsed lazily; return a PosLenStringVector
makeposlen!(col, coltype(col), ctx)
elseif !col.anymissing
# if no missing values were parsed for a col, we want to "unwrap" it to a plain Vector{T}
if col.type === Bool
col.column = convert(Vector{Bool}, col.column)
elseif col.type !== Union{} && col.type <: SmallIntegers
col.column = convert(Vector{col.type}, col.column)
else
col.column = parent(col.column)
end
end
end
end
# delete any dropped columns from names, columns
names = ctx.names
if length(columns) > length(names)
# columns were widened during parsing, auto-generate trailing column names
names = makeunique(append!(names, [Symbol(:Column, i) for i = (length(names) + 1):length(columns)]))
end
for i = length(columns):-1:1
col = columns[i]
if col.willdrop
deleteat!(names, i)
deleteat!(columns, i)
end
end
types = Type[coltype(col) for col in columns]
lookup = Dict(k => v for (k, v) in zip(names, columns))
ctx.debug && println("types after parsing: $types, pool = $(ctx.pool)")
# for windows, it's particularly finicky about throwing errors when you try to modify an mmapped file
# so we just want to make sure we finalize the input buffer so users don't run into surprises
# on Julia 1.11 the underlying memory needs to be finalized to unmmap the file.
# Ref: https://github.com/JuliaLang/julia/pull/54210
if !chunking && Sys.iswindows() && ctx.stringtype !== PosLenString
if VERSION ≥ v"1.11"
finalize(ctx.buf.ref.mem)
else
finalize(ctx.buf)
end
end
# check if a temp file was generated for parsing
if !chunking && ctx.tempfile !== nothing && ctx.stringtype !== PosLenString
rm(ctx.tempfile; force=true)
end
end # @inbounds begin
return File(ctx.name, names, types, finalrows, length(columns), columns, lookup)
end
function multithreadparse(ctx, pertaskcolumns, rowchunkguess, i, rows, wholecolumnslock)
columns = ctx.columns
tt = Base.time()
task_columns = [Column(col) for col in columns] # task-local columns derived from top-level columns
allocate!(task_columns, rowchunkguess)
pertaskcolumns[i] = task_columns
task_pos = ctx.chunkpositions[i]
task_len = ctx.chunkpositions[i + 1] - (i != ctx.ntasks)
# for error-reporting purposes, we want to try and give the best guess of where a row emits a warning/error, so compute that
rowchunkoffset = (ctx.datarow - 1) + (rowchunkguess * (i - 1))
task_rows, task_pos = parsefilechunk!(ctx, task_pos, task_len, rowchunkguess, rowchunkoffset, task_columns, ctx.customtypes)::Tuple{Int, Int}
rows[i] = task_rows
# promote column types/flags this task detected while parsing
lock(wholecolumnslock) do
# check if this task widened columns while parsing
if length(task_columns) > length(columns)
for j = (length(columns) + 1):length(task_columns)
col = task_columns[j] # I'm pretty sure it's ok to just use the per-task column directly here as new top-level column?
# initialize lock since it hasn't been initialized yet
col.lock = ReentrantLock()
push!(columns, col)
end
end
end
# now we know that columns is at least as long as task_columns
for j = 1:length(task_columns)
col = columns[j]
# note col.lock is shared amongst all tasks (i.e. belongs to parent columns[i].lock)
lock(col.lock) do
task_col = task_columns[j]
T = col.type
col.type = something(promote_types(T, task_col.type), ctx.stringtype)
if T !== col.type
ctx.debug && println("promoting col = $j from $T to $(col.type), task chunk ($i) was type = $(task_col.type)")
end
col.anymissing |= task_col.anymissing
end
end
ctx.debug && println("finished parsing $task_rows rows on task = $i: time for parsing: $(Base.time() - tt)")
return
end
function multithreadpostparse(ctx, ntasks, pertaskcolumns, rows, finalrows, j, col)
# first check if need to re-parse any chunks
for i = 1:ntasks
task_columns = pertaskcolumns[i]
task_col = task_columns[j]
task_rows = rows[i]
# check if we need to promote a task-local column based on what other threads parsed
T = col.type # final promoted type from amongst all separate parsing tasks
T2 = task_col.type
if T isa StringTypes && !(T2 isa StringTypes)
# promoting non-string to string column
ctx.debug && println("multithreaded promoting column $j to string from $T2")
task_len = ctx.chunkpositions[i + 1] - (i != ntasks)
task_pos = ctx.chunkpositions[i]
promotetostring!(ctx, ctx.buf, task_pos, task_len, task_rows, sum(rows[1:i-1]), task_columns, ctx.customtypes, j, Ref(0), task_rows, T)
col.type = something(promote_types(T, task_columns[j].type), ctx.stringtype)
T = col.type
end
end
for i = 1:ntasks
task_columns = pertaskcolumns[i]
task_col = task_columns[j]
task_rows = rows[i]
# check if we need to promote a task-local column based on what other threads parsed
T = col.type # final promoted type from amongst all separate parsing tasks
T2 = task_col.type
if T === Float64 && T2 <: Integer
# one chunk parsed as Int, another as Float64, promote to Float64
ctx.debug && println("multithreaded promoting column $j to float")
task_col.column = convert(SentinelVector{Float64}, task_col.column)
elseif T !== T2 && (T <: InlineString || (T === String && T2 <: InlineString))
# promote to widest InlineString type
task_col.column = convert(SentinelVector{T}, task_col.column)
elseif T !== T2
# one chunk parsed all missing values, but another chunk had a typed value, promote to that
# while keeping all values `missing` (allocate by default ensures columns have all missing values)
ctx.debug && println("multithreaded promoting column $j from missing on task $i")
task_col.column = allocate(T, task_rows)
end
end
T = col.anymissing ? Union{col.type, Missing} : col.type
if maybepooled(col) &&
(col.type isa StringTypes || col.columnspecificpool) &&
checkpooled!(T, pertaskcolumns, col, j, ntasks, finalrows, ctx)
# col.column is a PooledArray
elseif col.type === Int64
# we need to special-case Int here because while parsing, a default Int64 sentinel value is chosen to
# represent missing; if any chunk bumped into that sentinel value while parsing, then it cycled to a
# new sentinel value; this step ensures that each chunk has the same encoded sentinel value
# passing force=false means it will first check if all chunks already have the same sentinel and return
# immediately if so, which will be the case most often
SentinelArrays.newsentinel!((pertaskcolumns[i][j].column::SVec{Int64} for i = 1:ntasks)...; force=false)
makechain!(col.type, pertaskcolumns, col, j, ntasks)
elseif col.type === PosLenString
col.column = ChainedVector(PosLenStringVector{coltype(col)}[makeposlen!(pertaskcolumns[i][j], coltype(col), ctx) for i = 1:ntasks])
elseif col.type === NeedsTypeDetection || col.type === HardMissing
col.type = Missing
col.column = MissingVector(finalrows)
else
makechain!(col.type, pertaskcolumns, col, j, ntasks)
end
if finalrows < length(col.column)
# we only ever resize! down here, so no need to use reallocate!
resize!(col.column, finalrows)
end
return
end
function makechain!(::Type{T}, pertaskcolumns, col, j, ntasks) where {T}
if col.anymissing
col.column = ChainedVector([pertaskcolumns[i][j].column for i = 1:ntasks])
else
if col.type === Bool
col.column = ChainedVector([convert(Vector{Bool}, pertaskcolumns[i][j].column::vectype(T)) for i = 1:ntasks])
elseif col.type !== Union{} && col.type <: SmallIntegers
col.column = ChainedVector([convert(Vector{col.type}, pertaskcolumns[i][j].column::vectype(T)) for i = 1:ntasks])
else
col.column = ChainedVector([parent(pertaskcolumns[i][j].column) for i = 1:ntasks])
end
end
return
end
# T is Union{T, Missing} or T depending on col.anymissing
function checkpooled!(::Type{T}, pertaskcolumns, col, j, ntasks, nrows, ctx) where {T}
S = Base.nonmissingtype(T)
pool = Dict{T, UInt32}()
lastref = Ref{UInt32}(0)
refs = Vector{UInt32}(undef, nrows)
k = 1
limit = col.pool isa Tuple ? col.pool[2] : typemax(Int)
for i = 1:ntasks
column = (pertaskcolumns === nothing ? col.column : pertaskcolumns[i][j].column)::columntype(S)
for x in column
if x isa PosLen
if x.missingvalue
refs[k] = get!(pool, missing) do
lastref[] += UInt32(1)
end
elseif x.escapedvalue
val = S === PosLenString ? S(ctx.buf, x, ctx.options.e) : Parsers.getstring(ctx.buf, x, ctx.options.e)
refs[k] = get!(pool, val) do
lastref[] += UInt32(1)
end
else
val = PointerString(pointer(ctx.buf, x.pos), x.len)
index = Base.ht_keyindex2!(pool, val)
if index > 0
found_key = pool.vals[index]
ref = found_key::UInt32
else
new = lastref[] += UInt32(1)
if S === PosLenString
Base._setindex!(pool, new, S(ctx.buf, x, ctx.options.e), -index)
else
Base._setindex!(pool, new, S(val), -index)
end
ref = new
end
refs[k] = ref
end
else
refs[k] = get!(pool, x) do
lastref[] += UInt32(1)
end
end
k += 1
if length(pool) > limit
return false
end
end
end
cpool = col.pool
percent = cpool isa Tuple ? cpool[1] : cpool
if ((length(pool) - 1) / nrows) <= percent
col.column = PooledArray(PooledArrays.RefArray(refs), pool)
return true
else
return false
end
end
function makeposlen!(col, T, ctx)
col.column = PosLenStringVector{T}(ctx.buf, col.column::Vector{PosLen}, ctx.options.e)
return col.column
end
function parsefilechunk!(ctx::Context, pos, len, rowsguess, rowoffset, columns, ::Type{customtypes})::Tuple{Int, Int} where {customtypes}
buf = ctx.buf
transpose = ctx.transpose
limit = ctx.limit
row = 0
startpos = pos
if pos <= len && len > 0 && row < limit
numwarnings = Ref(0)
while true
row += 1
# @show columns
@inbounds pos = parserow(startpos, row, numwarnings, ctx, buf, pos, len, rowsguess, rowoffset, columns, customtypes)::Int
# @show columns
row == limit && break
(transpose ? all(c -> c.position >= c.endposition, columns) : pos > len) && break
# if our initial row estimate was too few, we need to reallocate our columns to read the rest of the file/chunk
if !transpose && row + 1 > rowsguess
# (bytes left in file/chunk) / (avg bytes per row) == estimated rows left in file (+ 5% to try and avoid reallocating)
estimated_rows_left = ceil(Int, ((len - pos) / ((pos - startpos) / row)) * 1.05)
newrowsguess = rowsguess + estimated_rows_left
newrowsguess = max(rowsguess + 1, newrowsguess)
ctx.debug && reallocatecolumns(rowoffset + row, rowsguess, newrowsguess)
for col in columns
isdefined(col, :column) && reallocate!(col.column, newrowsguess)
end
rowsguess = newrowsguess
end
end
if !ctx.threaded && ctx.ntasks > 1 && !ctx.silencewarnings
# !ctx.threaded && ctx.ntasks > 1 indicate that multithreaded parsing failed.
# These messages echo the corresponding debug statement in the definition of ctx
if numwarnings[] > 0
@warn "Multithreaded parsing failed and fell back to single-threaded parsing, check previous warnings for possible reasons."
else
@error "Multithreaded parsing failed and fell back to single-threaded parsing. This can happen if the input contains multi-line fields; otherwise, please report this issue."
end
end
end
# done parsing (at least this chunk), so resize columns to final row count
for col in columns
# we only ever resize! down here, so no need to use reallocate!
isdefined(col, :column) && resize!(col.column, row)
end
return row, pos
end
@noinline reallocatecolumns(row, old, new) = @warn("thread = $(Threads.threadid()) warning: didn't pre-allocate enough column while parsing around row $row, re-allocating from $old to $new...")
@noinline notenoughcolumns(cols, ncols, row) = @warn("thread = $(Threads.threadid()) warning: only found $cols / $ncols columns around data row: $row. Filling remaining columns with `missing`")
@noinline toomanycolumns(cols, row) = @warn("thread = $(Threads.threadid()) warning: parsed expected $cols columns, but didn't reach end of line around data row: $row. Parsing extra columns and widening final columnset")
@noinline stricterror(T, buf, pos, len, code, row, col) = throw(Error("thread = $(Threads.threadid()) error parsing $T around row = $row, col = $col: \"$(String(buf[pos:pos+len-1]))\", error=$(Parsers.codes(code))"))
@noinline warning(T, buf, pos, len, code, row, col) = @warn("thread = $(Threads.threadid()) warning: error parsing $T around row = $row, col = $col: \"$(String(buf[pos:pos+len-1]))\", error=$(Parsers.codes(code))")
@noinline fatalerror(buf, pos, len, code, row, col) = throw(Error("thread = $(Threads.threadid()) fatal error, encountered an invalidly quoted field while parsing around row = $row, col = $col: \"$(String(buf[pos:pos+len-1]))\", error=$(Parsers.codes(code)), check your `quotechar` arguments or manually fix the field in the file itself"))
@noinline toomanywwarnings() = @warn("thread = $(Threads.threadid()): too many warnings, silencing any further warnings")
Base.@propagate_inbounds function parserow(startpos, row, numwarnings, ctx::Context, buf, pos, len, rowsguess, rowoffset, columns, ::Type{customtypes})::Int where {customtypes}
# @show columns
ncols = length(columns)
for i = 1:ncols
col = columns[i]
if ctx.transpose
pos = col.position
end
type = col.type
cellstartpos = pos
if type === HardMissing
pos, code = parsevalue!(Missing, buf, pos, len, row, rowoffset, i, col, ctx)
elseif type === NeedsTypeDetection
pos, code = detectcell(buf, pos, len, row, rowoffset, i, col, ctx, rowsguess)
elseif type === Int8
pos, code = parsevalue!(Int8, buf, pos, len, row, rowoffset, i, col, ctx)
elseif type === Int16
pos, code = parsevalue!(Int16, buf, pos, len, row, rowoffset, i, col, ctx)
elseif type === Int32
pos, code = parsevalue!(Int32, buf, pos, len, row, rowoffset, i, col, ctx)
elseif type === Int64
pos, code = parsevalue!(Int64, buf, pos, len, row, rowoffset, i, col, ctx)
elseif type === Int128
pos, code = parsevalue!(Int128, buf, pos, len, row, rowoffset, i, col, ctx)
elseif type === Float16
pos, code = parsevalue!(Float16, buf, pos, len, row, rowoffset, i, col, ctx)
elseif type === Float32
pos, code = parsevalue!(Float32, buf, pos, len, row, rowoffset, i, col, ctx)
elseif type === Float64
pos, code = parsevalue!(Float64, buf, pos, len, row, rowoffset, i, col, ctx)
elseif type === InlineString1
pos, code = parsevalue!(InlineString1, buf, pos, len, row, rowoffset, i, col, ctx)
elseif type === InlineString3
pos, code = parsevalue!(InlineString3, buf, pos, len, row, rowoffset, i, col, ctx)
elseif type === InlineString7
pos, code = parsevalue!(InlineString7, buf, pos, len, row, rowoffset, i, col, ctx)
elseif type === InlineString15
pos, code = parsevalue!(InlineString15, buf, pos, len, row, rowoffset, i, col, ctx)
elseif type === InlineString31
pos, code = parsevalue!(InlineString31, buf, pos, len, row, rowoffset, i, col, ctx)
elseif type === InlineString63
pos, code = parsevalue!(InlineString63, buf, pos, len, row, rowoffset, i, col, ctx)
elseif type === InlineString127
pos, code = parsevalue!(InlineString127, buf, pos, len, row, rowoffset, i, col, ctx)
elseif type === InlineString255
pos, code = parsevalue!(InlineString255, buf, pos, len, row, rowoffset, i, col, ctx)
elseif type === String
pos, code = parsevalue!(String, buf, pos, len, row, rowoffset, i, col, ctx)
elseif type === PosLenString
pos, code = parsevalue!(PosLenString, buf, pos, len, row, rowoffset, i, col, ctx)
elseif type === Date
pos, code = parsevalue!(Date, buf, pos, len, row, rowoffset, i, col, ctx)
elseif type === DateTime
pos, code = parsevalue!(DateTime, buf, pos, len, row, rowoffset, i, col, ctx)
elseif type === Time
pos, code = parsevalue!(Time, buf, pos, len, row, rowoffset, i, col, ctx)
elseif type === Bool
pos, code = parsevalue!(Bool, buf, pos, len, row, rowoffset, i, col, ctx)
else
if customtypes !== Tuple{}
pos, code = parsecustom!(customtypes, buf, pos, len, row, rowoffset, i, col, ctx)
else
error("Column $i bad column type: `$(type)`")
end
end
if promote_to_string(code)
ctx.debug && println("promoting column i = $i to string from $(type) on chunk = $(Threads.threadid())")
if type <: InlineString
newT = String
elseif ctx.stringtype === InlineString
str = Parsers.xparse(String, buf, cellstartpos, len, col.options)
newT = pickstringtype(InlineString, str.val.len)
else
newT = ctx.stringtype
end
promotetostring!(ctx, buf, startpos, len, rowsguess, rowoffset, columns, customtypes, i, numwarnings, row, newT)
end
if ctx.transpose
col.position = pos
else
if i < ncols
if Parsers.newline(code) || pos > len
# in https://github.com/JuliaData/CSV.jl/issues/948,
# it was noticed that if we reached the EOF right before parsing
# the last expected column, then the warning is a bit spurious.
# The final value is `missing` and the csv writer chose to just
# "close" the file w/o including a final newline
# we can treat this special-case as "valid" and not emit a warning
if !(pos > len && i == (ncols - 1))
ctx.silencewarnings || numwarnings[] > ctx.maxwarnings || notenoughcolumns(i, ncols, rowoffset + row)
!ctx.silencewarnings && numwarnings[] == ctx.maxwarnings && toomanywwarnings()
numwarnings[] += 1
end
for j = (i + 1):ncols
columns[j].anymissing = true
end
break # from for i = 1:ncols
end
elseif pos <= len && !Parsers.newline(code)
# extra columns on this row, let's widen
ctx.silencewarnings || toomanycolumns(ncols, rowoffset + row)
j = i + 1
while pos <= len && !Parsers.newline(code)
col = initialize_column(j, ctx)
col.anymissing = ctx.streaming || rowoffset == 0 && row > 1 # assume all previous rows were missing
col.pool = ctx.pool
T = col.type
# TODO: Support edge case where a custom type was provided for the new column?
# Right now if `T` is a `nonstandardtype` not already in `customtypes`, then
# we won't have a specialised parse method for it, so parsing is expected to fail.
# Only log the error, rather than throw, in case parsing somehow works.
nonstandardtype(T) === Union{} || T in ctx.customtypes.parameters || @error "Parsing extra column with unknown type `$T`. Parsing may fail!"
if T === NeedsTypeDetection
pos, code = detectcell(buf, pos, len, row, rowoffset, j, col, ctx, rowsguess)
else
# need to allocate
col.column = allocate(T, ctx.rowsguess)
pos, code = parsevalue!(T, buf, pos, len, row, rowoffset, j, col, ctx)
end
j += 1
push!(columns, col)
end
end
end
end
return pos
end
function detectcell(buf, pos, len, row, rowoffset, i, col, ctx, rowsguess)::Tuple{Int, Int16}
# debug && println("detecting on task $(Threads.threadid())")
opts = col.options
code, tlen, x, xT = detect(pass, buf, pos, len, opts, false, ctx.downcast, rowoffset + row, i)
if x === missing
col.anymissing = true
@goto finaldone
end
newT = ctx.stringtype
if x !== nothing
# we found a non-missing value
newT = get(ctx.typemap, typeof(x), typeof(x))
if !(newT isa StringTypes)
if newT !== typeof(x)
# type-mapping typeof(x) => newT
# this ultimate call to Parsers.xparse has no hope in inference (because of the typeof(x) => newT mapping)
# so we "outline" the call and assert the types of everything but `y` to make sure `code` and `tlen` stay type stable
res = _parseany(newT, buf, pos, len, opts)
code, tlen = res.code, res.tlen
if Parsers.ok(code)
val = res.val
@goto done
end
else
val = x
@goto done
end
end
end
# if we "fall through" to here, that means we either detected a string value
# or we're type-mapping from another detected type to string
str = Parsers.xparse(String, buf, pos, len, opts)
poslen = str.val
if newT === InlineString && poslen.len < DEFAULT_MAX_INLINE_STRING_LENGTH
newT = InlineStringType(poslen.len)
val = newT(PosLenString(buf, poslen, opts.e))
elseif newT === PosLenString
newT = PosLenString
val = poslen
else
newT = String
val = Parsers.getstring(buf, poslen, opts.e)
end
@label done
# if we're here, that means we found a non-missing value, so we need to update column
column = allocate(newT, rowsguess)
column[row] = val
col.column = column
col.type = newT
@label finaldone
return pos + tlen, code
end
function parsevalue!(::Type{type}, buf, pos, len, row, rowoffset, i, col, ctx)::Tuple{Int, Int16} where {type}
opts = col.options
res = Parsers.xparse(type === Missing ? String : type, buf, pos, len, opts)
code = res.code
if !Parsers.invalid(code)
if type !== Missing
if Parsers.sentinel(code)
col.anymissing = true
else
column = col.column
val = res.val
if column isa Vector{PosLen} && val isa PosLen
@inbounds (column::Vector{PosLen})[row] = val
elseif type === String
@inbounds (column::SVec2{String})[row] = Parsers.getstring(buf, val, opts.e)
else
@inbounds (column::vectype(type))[row] = val
end
end
end
else
# something went wrong parsing
if Parsers.invalidquotedfield(code)
# this usually means parsing is borked because of an invalidly quoted field, hard error
fatalerror(buf, pos, res.tlen, code, rowoffset + row, i)
end
if type !== Missing && type !== PosLenString && type !== String
if col.userprovidedtype
if !ctx.strict
ctx.silencewarnings || warning(type, buf, pos, res.tlen, code, rowoffset + row, i)
col.anymissing = true
else
stricterror(type, buf, pos, res.tlen, code, rowoffset + row, i)
end
else
if type === Int8 || type === Int16 || type === Int32 || type === Int64 || type === Int128
newT = _widen(type)
while newT !== nothing && !Parsers.ok(code)
newT = get(ctx.typemap, newT, newT)
if newT isa StringTypes
code |= PROMOTE_TO_STRING
break
end
code = trytopromote!(type, newT, buf, pos, len, col, row)
newT = _widen(newT)
end
elseif type === InlineString1 || type === InlineString3 || type === InlineString7 || type === InlineString15
newT = widen(type)
while newT !== InlineString63
ret = _parseany(newT, buf, pos, len, opts)
if !Parsers.invalid(ret.code)
col.type = newT
column = col.column
col.column = convert(SentinelVector{newT}, col.column::vectype(type))
@inbounds col.column[row] = ret.val
return pos + ret.tlen, ret.code
end
newT = widen(newT)
end
#TODO: should we just convert(SentinelVector{String}) here?
code |= PROMOTE_TO_STRING
else
code |= PROMOTE_TO_STRING
end
end
end
end
return pos + res.tlen, code
end
@noinline function trytopromote!(::Type{from}, ::Type{to}, buf, pos, len, col, row)::Int16 where {from, to}
res = Parsers.xparse(to, buf, pos, len, col.options)
code = res.code
if !Parsers.invalid(code)
col.type = to
column = col.column
if column isa vectype(from)
col.column = convert(promotevectype(to), column)
@inbounds col.column[row] = res.val
end
else
code |= PROMOTE_TO_STRING
end
return code
end
@inline function parsecustom!(::Type{customtypes}, buf, pos, len, row, rowoffset, i, col, ctx) where {customtypes}
if @generated
block = Expr(:block)
push!(block.args, quote
error("CSV.jl code-generation error, unexpected column type: $(type)")
end)
for i = 1:fieldcount(customtypes)
T = fieldtype(customtypes, i)
pushfirst!(block.args, quote
if type === $T
return parsevalue!($T, buf, pos, len, row, rowoffset, i, col, ctx)
end
end)
end
pushfirst!(block.args, :(type = col.type))
pushfirst!(block.args, Expr(:meta, :inline))
# @show block
return block
else
# println("generated function failed")
return parsevalue!(col.type, buf, pos, len, row, rowoffset, i, col, ctx)
end
end
@noinline function promotetostring!(ctx::Context, buf, pos, len, rowsguess, rowoffset, columns, ::Type{customtypes}, column_to_promote, numwarnings, limit, stringtype) where {customtypes}
cols = [i == column_to_promote ? columns[i] : Column(Missing, columns[i].options) for i = 1:length(columns)]
col = cols[column_to_promote]
col.column = allocate(stringtype, rowsguess)
col.type = stringtype
row = 0
startpos = pos
if pos <= len && len > 0
while row < limit
row += 1
@inbounds pos = parserow(startpos, row, numwarnings, ctx, buf, pos, len, rowsguess, rowoffset, cols, customtypes)
pos > len && break
end
end
return
end
function File(sources::Vector;
source::Union{Nothing, Symbol, AbstractString,
Pair{<:Union{Symbol, AbstractString}, <:AbstractVector}}=nothing,
kw...)
isempty(sources) && throw(ArgumentError("unable to read delimited data from empty sources array"))
if source isa Pair
length(source.second) == length(sources) || throw(ArgumentError("source pair keyword argument list ($(length(source.second))) must match length of input vector ($(length(sources)))"))
end
length(sources) == 1 && return File(sources[1]; kw...)
all(x -> x isa ValidSources, sources) || throw(ArgumentError("all provided sources must be one of: `$ValidSources`"))
kws = merge(values(kw), (ntasks=1,))
f = File(sources[1]; kws...)
rows = getrows(f)
for col in getcolumns(f)
col.column = ChainedVector([col.column])
end
files = Vector{File}(undef, length(sources) - 1)
@sync for i = 2:length(sources)
Threads.@spawn begin
files[i - 1] = File(sources[i]; kws...)
end
end
lookup = getlookup(f)
for i = 2:length(sources)
f2 = files[i - 1]
rows += getrows(f2)
fl2 = getlookup(f2)
for (nm, col) in lookup
if haskey(fl2, nm)
col.column = chaincolumns!(col.column, fl2[nm].column)
else
col.column = chaincolumns!(col.column, MissingVector(getrows(f2)))
end
end
end
if source !== nothing
# add file name of each "partition" as 1st column
pushfirst!(files, f)
vals = source isa Pair ? source.second : [getname(f) for f in files]
pool = Dict(x => UInt32(i) for (i, x) in enumerate(vals))
arr = PooledArray(PooledArrays.RefArray(ChainedVector([fill(UInt32(i), getrows(f)) for (i, f) in enumerate(files)])), pool)
col = Column(eltype(arr))
col.column = arr
push!(getcolumns(f), col)
colnm = Symbol(source isa Pair ? source.first : source)
push!(getnames(f), colnm)
push!(gettypes(f), eltype(arr))
getlookup(f)[colnm] = col
end
return File(getname(f), getnames(f), gettypes(f), rows, getcols(f), getcolumns(f), getlookup(f))
end