Skip to content

Commit 5ec0094

Browse files
author
MFC Action
committed
Docs @ bae121f
1 parent f5273fd commit 5ec0094

File tree

1 file changed

+14
-14
lines changed

1 file changed

+14
-14
lines changed

documentation/md_examples.html

Lines changed: 14 additions & 14 deletions
Original file line numberDiff line numberDiff line change
@@ -139,15 +139,15 @@
139139
<h1><a class="anchor" id="autotoc_md34"></a>
140140
2D Riemann Test (2D)</h1>
141141
<p>Reference: </p><blockquote class="doxtable">
142-
<p>&zwj;Chamarthi, A., &amp; Hoffmann, N., &amp; Nishikawa, H., &amp; Frankel S. (2023). Implicit gradients based conservative numerical scheme for compressible flows. arXiv:2110.05461 </p>
142+
<p>Chamarthi, A., &amp; Hoffmann, N., &amp; Nishikawa, H., &amp; Frankel S. (2023). Implicit gradients based conservative numerical scheme for compressible flows. arXiv:2110.05461 </p>
143143
</blockquote>
144144
<h2><a class="anchor" id="autotoc_md35"></a>
145145
Density Initial and Final Conditions</h2>
146146
<p><img src="alpha_rho1_initial-2D_riemann_test-example.png" alt="" width="45%" class="inline"/> <img src="alpha_rho1_final-2D_riemann_test-example.png" alt="" width="45%" class="inline"/></p>
147147
<h1><a class="anchor" id="autotoc_md36"></a>
148148
Shock Droplet (2D)</h1>
149149
<p>Reference: </p><blockquote class="doxtable">
150-
<p>&zwj;Panchal et. al., A Seven-Equation Diffused Interface Method for Resolved Multiphase Flows, JCP, 475 (2023) </p>
150+
<p>Panchal et. al., A Seven-Equation Diffused Interface Method for Resolved Multiphase Flows, JCP, 475 (2023) </p>
151151
</blockquote>
152152
<h2><a class="anchor" id="autotoc_md37"></a>
153153
Initial Condition</h2>
@@ -158,7 +158,7 @@ <h2><a class="anchor" id="autotoc_md38"></a>
158158
<h1><a class="anchor" id="autotoc_md39"></a>
159159
Perfectly Stirred Reactor</h1>
160160
<p>Reference: </p><blockquote class="doxtable">
161-
<p>&zwj;G. B. Skinner and G. H. Ringrose, “Ignition Delays of a Hydrogen—Oxygen—Argon Mixture at Relatively Low Temperatures”, J. Chem. Phys., vol. 42, no. 6, pp. 2190–2192, Mar. 1965. Accessed: Oct. 13, 2024. [Online]. Available: <a href="https://doi.org/10.1063/1.1696266">https://doi.org/10.1063/1.1696266</a>. </p>
161+
<p>G. B. Skinner and G. H. Ringrose, “Ignition Delays of a Hydrogen—Oxygen—Argon Mixture at Relatively Low Temperatures”, J. Chem. Phys., vol. 42, no. 6, pp. 2190–2192, Mar. 1965. Accessed: Oct. 13, 2024. [Online]. Available: <a href="https://doi.org/10.1063/1.1696266">https://doi.org/10.1063/1.1696266</a>. </p>
162162
</blockquote>
163163
<div class="fragment"><div class="line">$ python3 analyze.py</div>
164164
<div class="line">Induction Times ([OH] &gt;= 1e-6):</div>
@@ -169,7 +169,7 @@ <h1><a class="anchor" id="autotoc_md39"></a>
169169
<h1><a class="anchor" id="autotoc_md40"></a>
170170
Titarev-Toro problem (1D)</h1>
171171
<p>Reference: </p><blockquote class="doxtable">
172-
<p>&zwj;V. A. Titarev, E. F. Toro, Finite-volume WENO schemes for three-dimensional conservation laws, Journal of Computational Physics 201 (1) (2004) 238–260. </p>
172+
<p>V. A. Titarev, E. F. Toro, Finite-volume WENO schemes for three-dimensional conservation laws, Journal of Computational Physics 201 (1) (2004) 238–260. </p>
173173
</blockquote>
174174
<h2><a class="anchor" id="autotoc_md41"></a>
175175
Initial Condition</h2>
@@ -185,7 +185,7 @@ <h2><a class="anchor" id="autotoc_md44"></a>
185185
<h1><a class="anchor" id="autotoc_md45"></a>
186186
Shu-Osher problem (1D)</h1>
187187
<p>Reference: </p><blockquote class="doxtable">
188-
<p>&zwj;C. W. Shu, S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes, Journal of Computational Physics 77 (2) (1988) 439–471. doi:10.1016/0021-9991(88)90177-5. </p>
188+
<p>C. W. Shu, S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes, Journal of Computational Physics 77 (2) (1988) 439–471. doi:10.1016/0021-9991(88)90177-5. </p>
189189
</blockquote>
190190
<h2><a class="anchor" id="autotoc_md46"></a>
191191
Initial Condition</h2>
@@ -201,15 +201,15 @@ <h2><a class="anchor" id="autotoc_md49"></a>
201201
<h1><a class="anchor" id="autotoc_md50"></a>
202202
2D Triple Point (2D)</h1>
203203
<p>Reference: </p><blockquote class="doxtable">
204-
<p>&zwj;Trojak, W., &amp; Dzanic, T. Positivity-preserving discoutinous spectral element method for compressible multi-species flows. arXiv:2308.02426 </p>
204+
<p>Trojak, W., &amp; Dzanic, T. Positivity-preserving discoutinous spectral element method for compressible multi-species flows. arXiv:2308.02426 </p>
205205
</blockquote>
206206
<h2><a class="anchor" id="autotoc_md51"></a>
207207
Numerical Schlieren at Final Time</h2>
208208
<p><img src="final-2D_triple_point-example.png" alt="" height="400" class="inline"/></p>
209209
<h1><a class="anchor" id="autotoc_md52"></a>
210210
Lax shock tube problem (1D)</h1>
211211
<p>Reference: </p><blockquote class="doxtable">
212-
<p>&zwj;P. D. Lax, Weak solutions of nonlinear hyperbolic equations and their numerical computation, Communications on pure and applied mathematics 7 (1) (1954) 159–193. </p>
212+
<p>P. D. Lax, Weak solutions of nonlinear hyperbolic equations and their numerical computation, Communications on pure and applied mathematics 7 (1) (1954) 159–193. </p>
213213
</blockquote>
214214
<h2><a class="anchor" id="autotoc_md53"></a>
215215
Initial Condition</h2>
@@ -220,10 +220,10 @@ <h2><a class="anchor" id="autotoc_md54"></a>
220220
<h1><a class="anchor" id="autotoc_md55"></a>
221221
Lid-Driven Cavity Problem (2D)</h1>
222222
<p>Reference: </p><blockquote class="doxtable">
223-
<p>&zwj;Bezgin, D. A., &amp; Buhendwa A. B., &amp; Adams N. A. (2022). JAX-FLUIDS: A fully-differentiable high-order computational fluid dynamics solver for compressible two-phase flows. arXiv:2203.13760 </p>
223+
<p>Bezgin, D. A., &amp; Buhendwa A. B., &amp; Adams N. A. (2022). JAX-FLUIDS: A fully-differentiable high-order computational fluid dynamics solver for compressible two-phase flows. arXiv:2203.13760 </p>
224224
</blockquote>
225225
<blockquote class="doxtable">
226-
<p>&zwj;Ghia, U., &amp; Ghia, K. N., &amp; Shin, C. T. (1982). High-re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. Journal of Computational Physics, 48, 387-411 </p>
226+
<p>Ghia, U., &amp; Ghia, K. N., &amp; Shin, C. T. (1982). High-re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. Journal of Computational Physics, 48, 387-411 </p>
227227
</blockquote>
228228
<p>Video: <a href="https://youtube.com/shorts/JEP28scZrBM?feature=share">https://youtube.com/shorts/JEP28scZrBM?feature=share</a></p>
229229
<h2><a class="anchor" id="autotoc_md56"></a>
@@ -235,7 +235,7 @@ <h2><a class="anchor" id="autotoc_md57"></a>
235235
<h1><a class="anchor" id="autotoc_md58"></a>
236236
1D Multi-Component Inert Shock Tube</h1>
237237
<p>Reference: </p><blockquote class="doxtable">
238-
<p>&zwj;P. J. Martínez Ferrer, R. Buttay, G. Lehnasch, and A. Mura, “A detailed verification procedure for compressible reactive multicomponent Navier–Stokes solvers”, Comput. &amp; Fluids, vol. 89, pp. 88–110, Jan. 2014. Accessed: Oct. 13, 2024. [Online]. Available: <a href="https://doi.org/10.1016/j.compfluid.2013.10.014">https://doi.org/10.1016/j.compfluid.2013.10.014</a> </p>
238+
<p>P. J. Martínez Ferrer, R. Buttay, G. Lehnasch, and A. Mura, “A detailed verification procedure for compressible reactive multicomponent Navier–Stokes solvers”, Comput. &amp; Fluids, vol. 89, pp. 88–110, Jan. 2014. Accessed: Oct. 13, 2024. [Online]. Available: <a href="https://doi.org/10.1016/j.compfluid.2013.10.014">https://doi.org/10.1016/j.compfluid.2013.10.014</a> </p>
239239
</blockquote>
240240
<h2><a class="anchor" id="autotoc_md59"></a>
241241
Initial Condition</h2>
@@ -246,7 +246,7 @@ <h2><a class="anchor" id="autotoc_md60"></a>
246246
<h1><a class="anchor" id="autotoc_md61"></a>
247247
Isentropic vortex problem (2D)</h1>
248248
<p>Reference: </p><blockquote class="doxtable">
249-
<p>&zwj;Coralic, V., &amp; Colonius, T. (2014). Finite-volume Weno scheme for viscous compressible multicomponent flows. Journal of Computational Physics, 274, 95–121. <a href="https://doi.org/10.1016/j.jcp.2014.06.003">https://doi.org/10.1016/j.jcp.2014.06.003</a> </p>
249+
<p>Coralic, V., &amp; Colonius, T. (2014). Finite-volume Weno scheme for viscous compressible multicomponent flows. Journal of Computational Physics, 274, 95–121. <a href="https://doi.org/10.1016/j.jcp.2014.06.003">https://doi.org/10.1016/j.jcp.2014.06.003</a> </p>
250250
</blockquote>
251251
<h2><a class="anchor" id="autotoc_md62"></a>
252252
Density</h2>
@@ -278,7 +278,7 @@ <h2><a class="anchor" id="autotoc_md69"></a>
278278
<h1><a class="anchor" id="autotoc_md70"></a>
279279
Taylor-Green Vortex (3D)</h1>
280280
<p>Reference: </p><blockquote class="doxtable">
281-
<p>&zwj;Hillewaert, K. (2013). TestCase C3.5 - DNS of the transition of the Taylor-Green vortex, Re=1600 - Introduction and result summary. 2nd International Workshop on high-order methods for CFD. </p>
281+
<p>Hillewaert, K. (2013). TestCase C3.5 - DNS of the transition of the Taylor-Green vortex, Re=1600 - Introduction and result summary. 2nd International Workshop on high-order methods for CFD. </p>
282282
</blockquote>
283283
<h2><a class="anchor" id="autotoc_md71"></a>
284284
Final Condition</h2>
@@ -297,10 +297,10 @@ <h2><a class="anchor" id="autotoc_md75"></a>
297297
<h1><a class="anchor" id="autotoc_md76"></a>
298298
1D Multi-Component Reactive Shock Tube</h1>
299299
<p>References: </p><blockquote class="doxtable">
300-
<p>&zwj;P. J. Martínez Ferrer, R. Buttay, G. Lehnasch, and A. Mura, “A detailed verification procedure for compressible reactive multicomponent Navier–Stokes solvers”, Comput. &amp; Fluids, vol. 89, pp. 88–110, Jan. 2014. Accessed: Oct. 13, 2024. [Online]. Available: <a href="https://doi.org/10.1016/j.compfluid.2013.10.014">https://doi.org/10.1016/j.compfluid.2013.10.014</a> </p>
300+
<p>P. J. Martínez Ferrer, R. Buttay, G. Lehnasch, and A. Mura, “A detailed verification procedure for compressible reactive multicomponent Navier–Stokes solvers”, Comput. &amp; Fluids, vol. 89, pp. 88–110, Jan. 2014. Accessed: Oct. 13, 2024. [Online]. Available: <a href="https://doi.org/10.1016/j.compfluid.2013.10.014">https://doi.org/10.1016/j.compfluid.2013.10.014</a> </p>
301301
</blockquote>
302302
<blockquote class="doxtable">
303-
<p>&zwj;H. Chen, C. Si, Y. Wu, H. Hu, and Y. Zhu, “Numerical investigation of the effect of equivalence ratio on the propagation characteristics and performance of rotating detonation engine”, Int. J. Hydrogen Energy, Mar. 2023. Accessed: Oct. 13, 2024. [Online]. Available: <a href="https://doi.org/10.1016/j.ijhydene.2023.03.190">https://doi.org/10.1016/j.ijhydene.2023.03.190</a> </p>
303+
<p>H. Chen, C. Si, Y. Wu, H. Hu, and Y. Zhu, “Numerical investigation of the effect of equivalence ratio on the propagation characteristics and performance of rotating detonation engine”, Int. J. Hydrogen Energy, Mar. 2023. Accessed: Oct. 13, 2024. [Online]. Available: <a href="https://doi.org/10.1016/j.ijhydene.2023.03.190">https://doi.org/10.1016/j.ijhydene.2023.03.190</a> </p>
304304
</blockquote>
305305
<h2><a class="anchor" id="autotoc_md77"></a>
306306
Initial Condition</h2>

0 commit comments

Comments
 (0)