You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
<p>Bezgin, D. A., & Buhendwa A. B., & Adams N. A. (2022). JAX-FLUIDS: A fully-differentiable high-order computational fluid dynamics solver for compressible two-phase flows. arXiv:2203.13760 </p>
<p>Ghia, U., & Ghia, K. N., & Shin, C. T. (1982). High-re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. Journal of Computational Physics, 48, 387-411 </p>
<p>Hillewaert, K. (2013). TestCase C3.5 - DNS of the transition of the Taylor-Green vortex, Re=1600 - Introduction and result summary. 2nd International Workshop on high-order methods for CFD. </p>
179
179
</blockquote>
180
-
<h2><aclass="anchor" id="autotoc_md45"></a>
180
+
<h2><aclass="anchor" id="autotoc_md46"></a>
181
181
Final Condition</h2>
182
182
<p>This figure shows the isosurface with zero q-criterion.</p>
<p>Chamarthi, A., & Hoffmann, N., & Nishikawa, H., & Frankel S. (2023). Implicit gradients based conservative numerical scheme for compressible flows. arXiv:2110.05461 </p>
<p>The <ahref="case.py"><b>Scaling</b></a> case can exercise both weak- and strong-scaling. It adjusts itself depending on the number of requested ranks.</p>
211
211
<p>This directory also contains a collection of scripts used to test strong-scaling on OLCF Frontier. They required modifying MFC to collect some metrics but are meant to serve as a reference to users wishing to run similar experiments.</p>
212
-
<h2><aclass="anchor" id="autotoc_md54"></a>
212
+
<h2><aclass="anchor" id="autotoc_md55"></a>
213
213
Weak Scaling</h2>
214
214
<p>Pass <code>--scaling weak</code>. The <code>--memory</code> option controls (approximately) how much memory each rank should use, in Gigabytes. The number of cells in each dimension is then adjusted according to the number of requested ranks and an approximation for the relation between cell count and memory usage. The problem size increases linearly with the number of ranks.</p>
215
-
<h2><aclass="anchor" id="autotoc_md55"></a>
215
+
<h2><aclass="anchor" id="autotoc_md56"></a>
216
216
Strong Scaling</h2>
217
217
<p>Pass <code>--scaling strong</code>. The <code>--memory</code> option controls (approximately) how much memory should be used in total during simulation, across all ranks, in Gigabytes. The problem size remains constant as the number of ranks increases.</p>
218
-
<h2><aclass="anchor" id="autotoc_md56"></a>
218
+
<h2><aclass="anchor" id="autotoc_md57"></a>
219
219
Example</h2>
220
220
<p>For example, to run a weak-scaling test that uses ~4GB of GPU memory per rank on 8 2-rank nodes with case optimization, one could:</p>
221
221
<divclass="fragment"><divclass="line">./mfc.sh run examples/scaling/case.py -t pre_process simulation \</div>
</div><!-- fragment --><h1><aclass="anchor" id="autotoc_md57"></a>
224
+
</div><!-- fragment --><h1><aclass="anchor" id="autotoc_md58"></a>
225
225
1D Multi-Component Inert Shock Tube</h1>
226
226
<p>Reference: </p><blockquoteclass="doxtable">
227
-
<p>P. J. Martínez Ferrer, R. Buttay, G. Lehnasch, and A. Mura, “A detailed verification procedure for compressible reactive multicomponent Navier–Stokes solvers”, Comput. & Fluids, vol. 89, pp. 88–110, Jan. 2014. Accessed: Oct. 13, 2024. [Online]. Available: <ahref="https://doi.org/10.1016/j.compfluid.2013.10.014">https://doi.org/10.1016/j.compfluid.2013.10.014</a></p>
227
+
<p>P. J. Martínez Ferrer, R. Buttay, G. Lehnasch, and A. Mura, “A detailed verification procedure for compressible reactive multicomponent Navier–Stokes solvers”, Computers & Fluids, vol. 89, pp. 88–110, Jan. 2014. Accessed: Oct. 13, 2024. [Online]. Available: <ahref="https://doi.org/10.1016/j.compfluid.2013.10.014">https://doi.org/10.1016/j.compfluid.2013.10.014</a></p>
<p>V. A. Titarev, E. F. Toro, Finite-volume WENO schemes for three-dimensional conservation laws, Journal of Computational Physics 201 (1) (2004) 238–260. </p>
<p>P. D. Lax, Weak solutions of nonlinear hyperbolic equations and their numerical computation, Communications on pure and applied mathematics 7 (1) (1954) 159–193. </p>
<p>P. J. Martínez Ferrer, R. Buttay, G. Lehnasch, and A. Mura, “A detailed verification procedure for compressible reactive multicomponent Navier–Stokes solvers”, Comput. & Fluids, vol. 89, pp. 88–110, Jan. 2014. Accessed: Oct. 13, 2024. [Online]. Available: <ahref="https://doi.org/10.1016/j.compfluid.2013.10.014">https://doi.org/10.1016/j.compfluid.2013.10.014</a></p>
279
+
<p>P. J. Martínez Ferrer, R. Buttay, G. Lehnasch, and A. Mura, “A detailed verification procedure for compressible reactive multicomponent Navier–Stokes solvers”, Computers & Fluids, vol. 89, pp. 88–110, Jan. 2014. Accessed: Oct. 13, 2024. [Online]. Available: <ahref="https://doi.org/10.1016/j.compfluid.2013.10.014">https://doi.org/10.1016/j.compfluid.2013.10.014</a></p>
280
280
</blockquote>
281
281
<blockquoteclass="doxtable">
282
282
<p>H. Chen, C. Si, Y. Wu, H. Hu, and Y. Zhu, “Numerical investigation of the effect of equivalence ratio on the propagation characteristics and performance of rotating detonation engine”, Int. J. Hydrogen Energy, Mar. 2023. Accessed: Oct. 13, 2024. [Online]. Available: <ahref="https://doi.org/10.1016/j.ijhydene.2023.03.190">https://doi.org/10.1016/j.ijhydene.2023.03.190</a></p>
<p>G. B. Skinner and G. H. Ringrose, “Ignition Delays of a Hydrogen—Oxygen—Argon Mixture at Relatively Low Temperatures”, J. Chem. Phys., vol. 42, no. 6, pp. 2190–2192, Mar. 1965. Accessed: Oct. 13, 2024. [Online]. Available: <ahref="https://doi.org/10.1063/1.1696266">https://doi.org/10.1063/1.1696266</a>. </p>
0 commit comments