Skip to content

Commit 9819274

Browse files
author
MFC Action
committed
Docs @ e3572d1
1 parent 5657799 commit 9819274

File tree

990 files changed

+30898
-19116
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

990 files changed

+30898
-19116
lines changed

documentation/doxygen_crawl.html

Lines changed: 8 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -40,14 +40,14 @@
4040
<a href="md_case.html#autotoc_md30"/>
4141
<a href="md_case.html#autotoc_md31"/>
4242
<a href="md_case.html#autotoc_md32"/>
43+
<a href="md_case.html#autotoc_md33"/>
4344
<a href="md_case.html#autotoc_md4"/>
4445
<a href="md_case.html#autotoc_md5"/>
4546
<a href="md_case.html#autotoc_md6"/>
4647
<a href="md_case.html#autotoc_md7"/>
4748
<a href="md_case.html#autotoc_md8"/>
4849
<a href="md_case.html#autotoc_md9"/>
4950
<a href="md_examples.html"/>
50-
<a href="md_examples.html#autotoc_md34"/>
5151
<a href="md_examples.html#autotoc_md35"/>
5252
<a href="md_examples.html#autotoc_md36"/>
5353
<a href="md_examples.html#autotoc_md37"/>
@@ -92,8 +92,8 @@
9292
<a href="md_examples.html#autotoc_md76"/>
9393
<a href="md_examples.html#autotoc_md77"/>
9494
<a href="md_examples.html#autotoc_md78"/>
95+
<a href="md_examples.html#autotoc_md79"/>
9596
<a href="md_expectedPerformance.html"/>
96-
<a href="md_expectedPerformance.html#autotoc_md80"/>
9797
<a href="md_expectedPerformance.html#autotoc_md81"/>
9898
<a href="md_expectedPerformance.html#autotoc_md82"/>
9999
<a href="md_expectedPerformance.html#autotoc_md83"/>
@@ -103,37 +103,38 @@
103103
<a href="md_expectedPerformance.html#autotoc_md87"/>
104104
<a href="md_expectedPerformance.html#autotoc_md88"/>
105105
<a href="md_expectedPerformance.html#autotoc_md89"/>
106+
<a href="md_expectedPerformance.html#autotoc_md90"/>
106107
<a href="md_getting-started.html"/>
107-
<a href="md_getting-started.html#autotoc_md91"/>
108108
<a href="md_getting-started.html#autotoc_md92"/>
109109
<a href="md_getting-started.html#autotoc_md93"/>
110110
<a href="md_getting-started.html#autotoc_md94"/>
111111
<a href="md_getting-started.html#autotoc_md95"/>
112+
<a href="md_getting-started.html#autotoc_md96"/>
112113
<a href="md_papers.html"/>
113114
<a href="md_readme.html"/>
114-
<a href="md_readme.html#autotoc_md98"/>
115+
<a href="md_readme.html#autotoc_md100"/>
115116
<a href="md_readme.html#autotoc_md99"/>
116117
<a href="md_references.html"/>
117118
<a href="md_running.html"/>
118-
<a href="md_running.html#autotoc_md102"/>
119119
<a href="md_running.html#autotoc_md103"/>
120120
<a href="md_running.html#autotoc_md104"/>
121121
<a href="md_running.html#autotoc_md105"/>
122122
<a href="md_running.html#autotoc_md106"/>
123123
<a href="md_running.html#autotoc_md107"/>
124124
<a href="md_running.html#autotoc_md108"/>
125+
<a href="md_running.html#autotoc_md109"/>
125126
<a href="md_testing.html"/>
126-
<a href="md_testing.html#autotoc_md110"/>
127127
<a href="md_testing.html#autotoc_md111"/>
128+
<a href="md_testing.html#autotoc_md112"/>
128129
<a href="md_visualization.html"/>
129-
<a href="md_visualization.html#autotoc_md113"/>
130130
<a href="md_visualization.html#autotoc_md114"/>
131131
<a href="md_visualization.html#autotoc_md115"/>
132132
<a href="md_visualization.html#autotoc_md116"/>
133133
<a href="md_visualization.html#autotoc_md117"/>
134134
<a href="md_visualization.html#autotoc_md118"/>
135135
<a href="md_visualization.html#autotoc_md119"/>
136136
<a href="md_visualization.html#autotoc_md120"/>
137+
<a href="md_visualization.html#autotoc_md121"/>
137138
<a href="pages.html"/>
138139
</body>
139140
</html>

documentation/md_case.html

Lines changed: 25 additions & 22 deletions
Large diffs are not rendered by default.

documentation/md_examples.html

Lines changed: 48 additions & 48 deletions
Original file line numberDiff line numberDiff line change
@@ -135,13 +135,13 @@
135135
<div class="headertitle"><div class="title">Example Cases</div></div>
136136
</div><!--header-->
137137
<div class="contents">
138-
<div class="textblock"><p><a class="anchor" id="autotoc_md33"></a></p>
139-
<h1><a class="anchor" id="autotoc_md34"></a>
138+
<div class="textblock"><p><a class="anchor" id="autotoc_md34"></a></p>
139+
<h1><a class="anchor" id="autotoc_md35"></a>
140140
Rayleigh-Taylor Instability (2D)</h1>
141-
<h2><a class="anchor" id="autotoc_md35"></a>
141+
<h2><a class="anchor" id="autotoc_md36"></a>
142142
Final Condition and Linear Theory</h2>
143143
<p><img src="final_condition-2D_rayleigh_taylor-example.png" alt="" height="400" class="inline"/> <img src="linear_theory-2D_rayleigh_taylor-example.png" alt="" height="400" class="inline"/></p>
144-
<h1><a class="anchor" id="autotoc_md36"></a>
144+
<h1><a class="anchor" id="autotoc_md37"></a>
145145
Lid-Driven Cavity Problem (2D)</h1>
146146
<p>Reference: </p><blockquote class="doxtable">
147147
<p>Bezgin, D. A., &amp; Buhendwa A. B., &amp; Adams N. A. (2022). JAX-FLUIDS: A fully-differentiable high-order computational fluid dynamics solver for compressible two-phase flows. arXiv:2203.13760 </p>
@@ -150,144 +150,144 @@ <h1><a class="anchor" id="autotoc_md36"></a>
150150
<p>Ghia, U., &amp; Ghia, K. N., &amp; Shin, C. T. (1982). High-re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. Journal of Computational Physics, 48, 387-411 </p>
151151
</blockquote>
152152
<p>Video: <a href="https://youtube.com/shorts/JEP28scZrBM?feature=share">https://youtube.com/shorts/JEP28scZrBM?feature=share</a></p>
153-
<h2><a class="anchor" id="autotoc_md37"></a>
153+
<h2><a class="anchor" id="autotoc_md38"></a>
154154
Final Condition</h2>
155155
<p><img src="final_condition-2D_lid_driven_cavity-example.png" alt="" height="400" class="inline"/></p>
156-
<h2><a class="anchor" id="autotoc_md38"></a>
156+
<h2><a class="anchor" id="autotoc_md39"></a>
157157
Centerline Velocities</h2>
158158
<p><img src="centerline_velocities-2D_lid_driven_cavity-example.png" alt="" height="400" class="inline"/></p>
159-
<h1><a class="anchor" id="autotoc_md39"></a>
159+
<h1><a class="anchor" id="autotoc_md40"></a>
160160
Isentropic vortex problem (2D)</h1>
161161
<p>Reference: </p><blockquote class="doxtable">
162162
<p>Coralic, V., &amp; Colonius, T. (2014). Finite-volume Weno scheme for viscous compressible multicomponent flows. Journal of Computational Physics, 274, 95–121. <a href="https://doi.org/10.1016/j.jcp.2014.06.003">https://doi.org/10.1016/j.jcp.2014.06.003</a> </p>
163163
</blockquote>
164-
<h2><a class="anchor" id="autotoc_md40"></a>
164+
<h2><a class="anchor" id="autotoc_md41"></a>
165165
Density</h2>
166166
<p><img src="alpha_rho1-2D_isentropicvortex-example.png" alt="" height="400" class="inline"/></p>
167-
<h2><a class="anchor" id="autotoc_md41"></a>
167+
<h2><a class="anchor" id="autotoc_md42"></a>
168168
Density Norms</h2>
169169
<p><img src="density_norms-2D_isentropicvortex-example.png" alt="" height="400" class="inline"/></p>
170-
<h1><a class="anchor" id="autotoc_md42"></a>
170+
<h1><a class="anchor" id="autotoc_md43"></a>
171171
Rayleigh-Taylor Instability (3D)</h1>
172-
<h2><a class="anchor" id="autotoc_md43"></a>
172+
<h2><a class="anchor" id="autotoc_md44"></a>
173173
Final Condition and Linear Theory</h2>
174174
<p><img src="final_condition-3D_rayleigh_taylor-example.png" alt="" height="400" class="inline"/> <img src="linear_theory-3D_rayleigh_taylor-example.png" alt="" height="400" class="inline"/></p>
175-
<h1><a class="anchor" id="autotoc_md44"></a>
175+
<h1><a class="anchor" id="autotoc_md45"></a>
176176
Taylor-Green Vortex (3D)</h1>
177177
<p>Reference: </p><blockquote class="doxtable">
178178
<p>Hillewaert, K. (2013). TestCase C3.5 - DNS of the transition of the Taylor-Green vortex, Re=1600 - Introduction and result summary. 2nd International Workshop on high-order methods for CFD. </p>
179179
</blockquote>
180-
<h2><a class="anchor" id="autotoc_md45"></a>
180+
<h2><a class="anchor" id="autotoc_md46"></a>
181181
Final Condition</h2>
182182
<p>This figure shows the isosurface with zero q-criterion.</p>
183183
<p><img src="result-3D_TaylorGreenVortex-example.png" alt="" height="400" class="inline"/></p>
184-
<h1><a class="anchor" id="autotoc_md46"></a>
184+
<h1><a class="anchor" id="autotoc_md47"></a>
185185
2D Riemann Test (2D)</h1>
186186
<p>Reference: </p><blockquote class="doxtable">
187187
<p>Chamarthi, A., &amp; Hoffmann, N., &amp; Nishikawa, H., &amp; Frankel S. (2023). Implicit gradients based conservative numerical scheme for compressible flows. arXiv:2110.05461 </p>
188188
</blockquote>
189-
<h2><a class="anchor" id="autotoc_md47"></a>
189+
<h2><a class="anchor" id="autotoc_md48"></a>
190190
Density Initial and Final Conditions</h2>
191191
<p><img src="alpha_rho1_initial-2D_riemann_test-example.png" alt="" width="45%" class="inline"/> <img src="alpha_rho1_final-2D_riemann_test-example.png" alt="" width="45%" class="inline"/></p>
192-
<h1><a class="anchor" id="autotoc_md48"></a>
192+
<h1><a class="anchor" id="autotoc_md49"></a>
193193
Shu-Osher problem (1D)</h1>
194194
<p>Reference: </p><blockquote class="doxtable">
195195
<p>C. W. Shu, S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes, Journal of Computational Physics 77 (2) (1988) 439–471. doi:10.1016/0021-9991(88)90177-5. </p>
196196
</blockquote>
197-
<h2><a class="anchor" id="autotoc_md49"></a>
197+
<h2><a class="anchor" id="autotoc_md50"></a>
198198
Initial Condition</h2>
199199
<p><img src="initial-1D_shuosher_old-example.png" alt="" height="400" class="inline"/></p>
200-
<h2><a class="anchor" id="autotoc_md50"></a>
200+
<h2><a class="anchor" id="autotoc_md51"></a>
201201
Result</h2>
202202
<p><img src="result-1D_shuosher_old-example.png" alt="" height="400" class="inline"/></p>
203-
<h1><a class="anchor" id="autotoc_md51"></a>
203+
<h1><a class="anchor" id="autotoc_md52"></a>
204204
2D IBM CFL dt (2D)</h1>
205-
<h2><a class="anchor" id="autotoc_md52"></a>
205+
<h2><a class="anchor" id="autotoc_md53"></a>
206206
Result</h2>
207207
<p><img src="result-2D_ibm_cfl_dt-example.png" alt="" height="400" class="inline"/></p>
208-
<h1><a class="anchor" id="autotoc_md53"></a>
208+
<h1><a class="anchor" id="autotoc_md54"></a>
209209
Strong- &amp; Weak-scaling</h1>
210210
<p>The <a href="case.py"><b>Scaling</b></a> case can exercise both weak- and strong-scaling. It adjusts itself depending on the number of requested ranks.</p>
211211
<p>This directory also contains a collection of scripts used to test strong-scaling on OLCF Frontier. They required modifying MFC to collect some metrics but are meant to serve as a reference to users wishing to run similar experiments.</p>
212-
<h2><a class="anchor" id="autotoc_md54"></a>
212+
<h2><a class="anchor" id="autotoc_md55"></a>
213213
Weak Scaling</h2>
214214
<p>Pass <code>--scaling weak</code>. The <code>--memory</code> option controls (approximately) how much memory each rank should use, in Gigabytes. The number of cells in each dimension is then adjusted according to the number of requested ranks and an approximation for the relation between cell count and memory usage. The problem size increases linearly with the number of ranks.</p>
215-
<h2><a class="anchor" id="autotoc_md55"></a>
215+
<h2><a class="anchor" id="autotoc_md56"></a>
216216
Strong Scaling</h2>
217217
<p>Pass <code>--scaling strong</code>. The <code>--memory</code> option controls (approximately) how much memory should be used in total during simulation, across all ranks, in Gigabytes. The problem size remains constant as the number of ranks increases.</p>
218-
<h2><a class="anchor" id="autotoc_md56"></a>
218+
<h2><a class="anchor" id="autotoc_md57"></a>
219219
Example</h2>
220220
<p>For example, to run a weak-scaling test that uses ~4GB of GPU memory per rank on 8 2-rank nodes with case optimization, one could:</p>
221221
<div class="fragment"><div class="line">./mfc.sh run examples/scaling/case.py -t pre_process simulation \</div>
222222
<div class="line"> -e batch -p mypartition -N 8 -n 2 -w &quot;01:00:00&quot; -# &quot;MFC Weak Scaling&quot; \</div>
223223
<div class="line"> --case-optimization -j 32 -- --scaling weak --memory 4</div>
224-
</div><!-- fragment --><h1><a class="anchor" id="autotoc_md57"></a>
224+
</div><!-- fragment --><h1><a class="anchor" id="autotoc_md58"></a>
225225
1D Multi-Component Inert Shock Tube</h1>
226226
<p>Reference: </p><blockquote class="doxtable">
227-
<p>P. J. Martínez Ferrer, R. Buttay, G. Lehnasch, and A. Mura, “A detailed verification procedure for compressible reactive multicomponent Navier–Stokes solvers”, Comput. &amp; Fluids, vol. 89, pp. 88–110, Jan. 2014. Accessed: Oct. 13, 2024. [Online]. Available: <a href="https://doi.org/10.1016/j.compfluid.2013.10.014">https://doi.org/10.1016/j.compfluid.2013.10.014</a> </p>
227+
<p>P. J. Martínez Ferrer, R. Buttay, G. Lehnasch, and A. Mura, “A detailed verification procedure for compressible reactive multicomponent Navier–Stokes solvers”, Computers &amp; Fluids, vol. 89, pp. 88–110, Jan. 2014. Accessed: Oct. 13, 2024. [Online]. Available: <a href="https://doi.org/10.1016/j.compfluid.2013.10.014">https://doi.org/10.1016/j.compfluid.2013.10.014</a> </p>
228228
</blockquote>
229-
<h2><a class="anchor" id="autotoc_md58"></a>
229+
<h2><a class="anchor" id="autotoc_md59"></a>
230230
Initial Condition</h2>
231231
<p><img src="initial-1D_inert_shocktube-example.png" alt="" height="400" class="inline"/></p>
232-
<h2><a class="anchor" id="autotoc_md59"></a>
232+
<h2><a class="anchor" id="autotoc_md60"></a>
233233
Results</h2>
234234
<p><img src="result-1D_inert_shocktube-example.png" alt="" height="400" class="inline"/></p>
235-
<h1><a class="anchor" id="autotoc_md60"></a>
235+
<h1><a class="anchor" id="autotoc_md61"></a>
236236
Titarev-Toro problem (1D)</h1>
237237
<p>Reference: </p><blockquote class="doxtable">
238238
<p>V. A. Titarev, E. F. Toro, Finite-volume WENO schemes for three-dimensional conservation laws, Journal of Computational Physics 201 (1) (2004) 238–260. </p>
239239
</blockquote>
240-
<h2><a class="anchor" id="autotoc_md61"></a>
240+
<h2><a class="anchor" id="autotoc_md62"></a>
241241
Initial Condition</h2>
242242
<p><img src="initial-1D_titarevtorro-example.png" alt="" heiht="400" class="inline"/></p>
243-
<h2><a class="anchor" id="autotoc_md62"></a>
243+
<h2><a class="anchor" id="autotoc_md63"></a>
244244
Result</h2>
245245
<p><img src="result-1D_titarevtorro-example.png" alt="" heiht="400" class="inline"/></p>
246-
<h1><a class="anchor" id="autotoc_md63"></a>
246+
<h1><a class="anchor" id="autotoc_md64"></a>
247247
Shock Droplet (2D)</h1>
248248
<p>Reference: </p><blockquote class="doxtable">
249249
<p>Panchal et. al., A Seven-Equation Diffused Interface Method for Resolved Multiphase Flows, JCP, 475 (2023) </p>
250250
</blockquote>
251-
<h2><a class="anchor" id="autotoc_md64"></a>
251+
<h2><a class="anchor" id="autotoc_md65"></a>
252252
Initial Condition</h2>
253253
<p><img src="initial-2D_shockdroplet-example.png" alt="" height="400" class="inline"/></p>
254-
<h2><a class="anchor" id="autotoc_md65"></a>
254+
<h2><a class="anchor" id="autotoc_md66"></a>
255255
Result</h2>
256256
<p><img src="result-2D_shockdroplet-example.png" alt="" height="400" class="inline"/></p>
257-
<h1><a class="anchor" id="autotoc_md66"></a>
257+
<h1><a class="anchor" id="autotoc_md67"></a>
258258
Lax shock tube problem (1D)</h1>
259259
<p>Reference: </p><blockquote class="doxtable">
260260
<p>P. D. Lax, Weak solutions of nonlinear hyperbolic equations and their numerical computation, Communications on pure and applied mathematics 7 (1) (1954) 159–193. </p>
261261
</blockquote>
262-
<h2><a class="anchor" id="autotoc_md67"></a>
262+
<h2><a class="anchor" id="autotoc_md68"></a>
263263
Initial Condition</h2>
264264
<p><img src="initial-1D_laxshocktube-example.png" alt="" height="400" class="inline"/></p>
265-
<h2><a class="anchor" id="autotoc_md68"></a>
265+
<h2><a class="anchor" id="autotoc_md69"></a>
266266
Result</h2>
267267
<p><img src="result-1D_laxshocktube-example.png" alt="" height="400" class="inline"/></p>
268-
<h1><a class="anchor" id="autotoc_md69"></a>
268+
<h1><a class="anchor" id="autotoc_md70"></a>
269269
2D Triple Point (2D)</h1>
270270
<p>Reference: </p><blockquote class="doxtable">
271271
<p>Trojak, W., &amp; Dzanic, T. Positivity-preserving discoutinous spectral element method for compressible multi-species flows. arXiv:2308.02426 </p>
272272
</blockquote>
273-
<h2><a class="anchor" id="autotoc_md70"></a>
273+
<h2><a class="anchor" id="autotoc_md71"></a>
274274
Numerical Schlieren at Final Time</h2>
275275
<p><img src="final-2D_triple_point-example.png" alt="" height="400" class="inline"/></p>
276-
<h1><a class="anchor" id="autotoc_md71"></a>
276+
<h1><a class="anchor" id="autotoc_md72"></a>
277277
1D Multi-Component Reactive Shock Tube</h1>
278278
<p>References: </p><blockquote class="doxtable">
279-
<p>P. J. Martínez Ferrer, R. Buttay, G. Lehnasch, and A. Mura, “A detailed verification procedure for compressible reactive multicomponent Navier–Stokes solvers”, Comput. &amp; Fluids, vol. 89, pp. 88–110, Jan. 2014. Accessed: Oct. 13, 2024. [Online]. Available: <a href="https://doi.org/10.1016/j.compfluid.2013.10.014">https://doi.org/10.1016/j.compfluid.2013.10.014</a> </p>
279+
<p>P. J. Martínez Ferrer, R. Buttay, G. Lehnasch, and A. Mura, “A detailed verification procedure for compressible reactive multicomponent Navier–Stokes solvers”, Computers &amp; Fluids, vol. 89, pp. 88–110, Jan. 2014. Accessed: Oct. 13, 2024. [Online]. Available: <a href="https://doi.org/10.1016/j.compfluid.2013.10.014">https://doi.org/10.1016/j.compfluid.2013.10.014</a> </p>
280280
</blockquote>
281281
<blockquote class="doxtable">
282282
<p>H. Chen, C. Si, Y. Wu, H. Hu, and Y. Zhu, “Numerical investigation of the effect of equivalence ratio on the propagation characteristics and performance of rotating detonation engine”, Int. J. Hydrogen Energy, Mar. 2023. Accessed: Oct. 13, 2024. [Online]. Available: <a href="https://doi.org/10.1016/j.ijhydene.2023.03.190">https://doi.org/10.1016/j.ijhydene.2023.03.190</a> </p>
283283
</blockquote>
284-
<h2><a class="anchor" id="autotoc_md72"></a>
284+
<h2><a class="anchor" id="autotoc_md73"></a>
285285
Initial Condition</h2>
286286
<p><img src="initial-1D_reactive_shocktube-example.png" alt="" height="400" class="inline"/></p>
287-
<h2><a class="anchor" id="autotoc_md73"></a>
287+
<h2><a class="anchor" id="autotoc_md74"></a>
288288
Results</h2>
289289
<p><img src="result-1D_reactive_shocktube-example.png" alt="" height="400" class="inline"/></p>
290-
<h1><a class="anchor" id="autotoc_md74"></a>
290+
<h1><a class="anchor" id="autotoc_md75"></a>
291291
Perfectly Stirred Reactor</h1>
292292
<p>Reference: </p><blockquote class="doxtable">
293293
<p>G. B. Skinner and G. H. Ringrose, “Ignition Delays of a Hydrogen—Oxygen—Argon Mixture at Relatively Low Temperatures”, J. Chem. Phys., vol. 42, no. 6, pp. 2190–2192, Mar. 1965. Accessed: Oct. 13, 2024. [Online]. Available: <a href="https://doi.org/10.1063/1.1696266">https://doi.org/10.1063/1.1696266</a>. </p>
@@ -298,14 +298,14 @@ <h1><a class="anchor" id="autotoc_md74"></a>
298298
<div class="line"> + Cantera: 5.130e-05 s</div>
299299
<div class="line"> + (Che)MFC: 5.130e-05 s</div>
300300
</div><!-- fragment --><p><img src="result-nD_perfect_reactor-example.png" alt="" height="400" class="inline"/></p>
301-
<h1><a class="anchor" id="autotoc_md75"></a>
301+
<h1><a class="anchor" id="autotoc_md76"></a>
302302
IBM Bow Shock (3D)</h1>
303-
<h2><a class="anchor" id="autotoc_md76"></a>
303+
<h2><a class="anchor" id="autotoc_md77"></a>
304304
Final Condition</h2>
305305
<p><img src="result-3D_ibm_bowshock-example.png" alt="" height="400" class="inline"/></p>
306-
<h1><a class="anchor" id="autotoc_md77"></a>
306+
<h1><a class="anchor" id="autotoc_md78"></a>
307307
2D Hardcodied IC Example</h1>
308-
<h2><a class="anchor" id="autotoc_md78"></a>
308+
<h2><a class="anchor" id="autotoc_md79"></a>
309309
Initial Condition and Result</h2>
310310
<p><img src="initial-2D_hardcodied_ic-example.png" alt="" width="45%" class="inline"/> <img src="result-2D_hardcodied_ic-example.png" alt="" width="45%" class="inline"/> </p>
311311
</div></div><!-- contents -->

0 commit comments

Comments
 (0)