|
| 1 | +class Solution { |
| 2 | +public: |
| 3 | + int orangesRotting(vector<vector<int>>& grid) { |
| 4 | + // figure out the grid size |
| 5 | + int n = grid.size(); |
| 6 | + int m = grid[0].size(); |
| 7 | + //store {{row,col} , time} |
| 8 | + queue<pair<pair<int,int> , int>> q ; |
| 9 | + int visited[n][m]; |
| 10 | + int cntFresh = 0; |
| 11 | + for(int i = 0 ; i < n ; i++){ |
| 12 | + for(int j = 0 ; j < m ; j++){ |
| 13 | + // if cell contains rotten orange |
| 14 | + if(grid[i][j] == 2){ |
| 15 | + q.push({{i , j} , 0}); |
| 16 | + // mark as visited (rotten) in visited array |
| 17 | + visited[i][j] = 2 ; |
| 18 | + }else{ |
| 19 | + // if not rotten |
| 20 | + visited[i][j] = 0; |
| 21 | + } |
| 22 | + if(grid[i][j] == 1) cntFresh++ ; |
| 23 | + } |
| 24 | + } |
| 25 | + |
| 26 | + int tm = 0 ; |
| 27 | + // delta row and delta column |
| 28 | + int delRow[] = {-1 , 0 , 1 , 0}; |
| 29 | + int delCol[] = {0 , 1 , 0 , -1}; |
| 30 | + int cnt = 0; |
| 31 | + while(!q.empty()) |
| 32 | + { |
| 33 | + int row = q.front().first.first; |
| 34 | + int col = q.front().first.second; |
| 35 | + int t = q.front().second; |
| 36 | + tm = max(tm , t); |
| 37 | + q.pop(); |
| 38 | + |
| 39 | + |
| 40 | + //exactly 4 neighbours |
| 41 | + for(int i = 0 ; i < 4 ; i++) |
| 42 | + { |
| 43 | + //look for neighbouring row and column |
| 44 | + int nRow = row + delRow[i]; |
| 45 | + int nCol = col + delCol[i]; |
| 46 | + // check for valid cell and |
| 47 | + //and for unvisited orange |
| 48 | + if(nRow < n && nRow >=0 && nCol<m && nCol >=0 |
| 49 | + && grid[nRow][nCol] == 1 && visited[nRow][nCol] != 2 ) |
| 50 | + { |
| 51 | + // push in queue with timer increased |
| 52 | + q.push({{nRow , nCol} , t + 1 }); |
| 53 | + // mark as rotten |
| 54 | + visited[nRow][nCol] = 2 ; |
| 55 | + cnt++ ; |
| 56 | + } |
| 57 | + } |
| 58 | + |
| 59 | + } |
| 60 | + |
| 61 | + // if all oranges are not rotten |
| 62 | + if(cnt != cntFresh) return -1 ; |
| 63 | + |
| 64 | + return tm ; |
| 65 | + } |
| 66 | +}; |
0 commit comments