Skip to content

Commit c784bbc

Browse files
Update 01-classical_physics.jmd
1 parent 87286e8 commit c784bbc

File tree

1 file changed

+15
-19
lines changed

1 file changed

+15
-19
lines changed

tutorials/models/01-classical_physics.jmd

Lines changed: 15 additions & 19 deletions
Original file line numberDiff line numberDiff line change
@@ -40,21 +40,21 @@ plot!(sol.t, t->exp(-C₁*t),lw=3,ls=:dash,label="Analytical Solution")
4040

4141
#### Simple Harmonic Oscillator
4242

43-
Another classical example is the harmonic oscillator, given by
44-
$$
45-
\ddot{x} + \omega^2 x = 0
46-
$$
43+
Another classical example is the harmonic oscillator, given by:
44+
45+
$$\ddot{x} + \omega^2 x = 0$$
46+
4747
with the known analytical solution
48-
$$
49-
\begin{align*}
48+
49+
$$\begin{align*}
5050
x(t) &= A\cos(\omega t - \phi) \\
5151
v(t) &= -A\omega\sin(\omega t - \phi),
52-
\end{align*}
53-
$$
52+
\end{align*}$$
53+
5454
where
55-
$$
56-
A = \sqrt{c_1 + c_2} \qquad\text{and}\qquad \tan \phi = \frac{c_2}{c_1}
57-
$$
55+
56+
$$A = \sqrt{c_1 + c_2} \qquad\text{and}\qquad \tan \phi = \frac{c_2}{c_1}$$
57+
5858
with $c_1, c_2$ constants determined by the initial conditions such that
5959
$c_1$ is the initial position and $\omega c_2$ is the initial velocity.
6060

@@ -110,12 +110,10 @@ Notice that now we have a second order ODE.
110110
In order to use the same method as above, we nee to transform it into a system
111111
of first order ODEs by employing the notation $d\theta = \dot{\theta}$.
112112

113-
$$
114-
\begin{align*}
113+
$$\begin{align*}
115114
&\dot{\theta} = d{\theta} \\
116115
&\dot{d\theta} = - \frac{g}{L}{\sin(\theta)}
117-
\end{align*}
118-
$$
116+
\end{align*}$$
119117

120118
```julia
121119
# Simple Pendulum Problem
@@ -277,12 +275,10 @@ plot(p, xlabel="\\beta", ylabel="l_\\beta", ylims=(0, 0.03))
277275

278276
The Hénon-Heiles potential occurs when non-linear motion of a star around a galactic center with the motion restricted to a plane.
279277

280-
$$
281-
\begin{align}
278+
$$\begin{align}
282279
\frac{d^2x}{dt^2}&=-\frac{\partial V}{\partial x}\\
283280
\frac{d^2y}{dt^2}&=-\frac{\partial V}{\partial y}
284-
\end{align}
285-
$$
281+
\end{align}$$
286282

287283
where
288284

0 commit comments

Comments
 (0)