|
| 1 | +package com.thealgorithms.datastructures.trees; |
| 2 | + |
| 3 | +import java.util.ArrayList; |
| 4 | + |
| 5 | +/** |
| 6 | + * Implementation of a B-Tree, a self-balancing tree data structure that maintains sorted data |
| 7 | + * and allows searches, sequential access, insertions, and deletions in logarithmic time. |
| 8 | + * |
| 9 | + * B-Trees are generalizations of binary search trees in that a node can have more than two children. |
| 10 | + * They're widely used in databases and file systems. |
| 11 | + * |
| 12 | + * For more information: https://en.wikipedia.org/wiki/B-tree |
| 13 | + */ |
| 14 | + |
| 15 | +public class BTree { |
| 16 | + static class BTreeNode { |
| 17 | + int[] keys; |
| 18 | + int t; // Minimum degree (defines range for number of keys) |
| 19 | + BTreeNode[] children; |
| 20 | + int n; // Current number of keys |
| 21 | + boolean leaf; |
| 22 | + |
| 23 | + BTreeNode(int t, boolean leaf) { |
| 24 | + this.t = t; |
| 25 | + this.leaf = leaf; |
| 26 | + this.keys = new int[2 * t - 1]; |
| 27 | + this.children = new BTreeNode[2 * t]; |
| 28 | + this.n = 0; |
| 29 | + } |
| 30 | + |
| 31 | + void traverse(ArrayList<Integer> result) { |
| 32 | + for (int i = 0; i < n; i++) { |
| 33 | + if (!leaf) { |
| 34 | + children[i].traverse(result); |
| 35 | + } |
| 36 | + result.add(keys[i]); |
| 37 | + } |
| 38 | + if (!leaf) { |
| 39 | + children[n].traverse(result); |
| 40 | + } |
| 41 | + } |
| 42 | + |
| 43 | + BTreeNode search(int key) { |
| 44 | + int i = 0; |
| 45 | + while (i < n && key > keys[i]) { |
| 46 | + i++; |
| 47 | + } |
| 48 | + if (i < n && keys[i] == key) { |
| 49 | + return this; |
| 50 | + } |
| 51 | + if (leaf) { |
| 52 | + return null; |
| 53 | + } |
| 54 | + return children[i].search(key); |
| 55 | + } |
| 56 | + |
| 57 | + void insertNonFull(int key) { |
| 58 | + int i = n - 1; |
| 59 | + if (leaf) { |
| 60 | + while (i >= 0 && keys[i] > key) { |
| 61 | + keys[i + 1] = keys[i]; |
| 62 | + i--; |
| 63 | + } |
| 64 | + keys[i + 1] = key; |
| 65 | + n++; |
| 66 | + } else { |
| 67 | + while (i >= 0 && keys[i] > key) { |
| 68 | + i--; |
| 69 | + } |
| 70 | + if (children[i + 1].n == 2 * t - 1) { |
| 71 | + splitChild(i + 1, children[i + 1]); |
| 72 | + if (keys[i + 1] < key) { |
| 73 | + i++; |
| 74 | + } |
| 75 | + } |
| 76 | + children[i + 1].insertNonFull(key); |
| 77 | + } |
| 78 | + } |
| 79 | + |
| 80 | + void splitChild(int i, BTreeNode y) { |
| 81 | + BTreeNode z = new BTreeNode(y.t, y.leaf); |
| 82 | + z.n = t - 1; |
| 83 | + |
| 84 | + System.arraycopy(y.keys, t, z.keys, 0, t - 1); |
| 85 | + if (!y.leaf) { |
| 86 | + System.arraycopy(y.children, t, z.children, 0, t); |
| 87 | + } |
| 88 | + y.n = t - 1; |
| 89 | + |
| 90 | + for (int j = n; j >= i + 1; j--) { |
| 91 | + children[j + 1] = children[j]; |
| 92 | + } |
| 93 | + children[i + 1] = z; |
| 94 | + |
| 95 | + for (int j = n - 1; j >= i; j--) { |
| 96 | + keys[j + 1] = keys[j]; |
| 97 | + } |
| 98 | + keys[i] = y.keys[t - 1]; |
| 99 | + n++; |
| 100 | + } |
| 101 | + |
| 102 | + void remove(int key) { |
| 103 | + int idx = findKey(key); |
| 104 | + |
| 105 | + if (idx < n && keys[idx] == key) { |
| 106 | + if (leaf) { |
| 107 | + removeFromLeaf(idx); |
| 108 | + } else { |
| 109 | + removeFromNonLeaf(idx); |
| 110 | + } |
| 111 | + } else { |
| 112 | + if (leaf) { |
| 113 | + return; // Key not found |
| 114 | + } |
| 115 | + |
| 116 | + boolean flag = idx == n; |
| 117 | + if (children[idx].n < t) { |
| 118 | + fill(idx); |
| 119 | + } |
| 120 | + |
| 121 | + if (flag && idx > n) { |
| 122 | + children[idx - 1].remove(key); |
| 123 | + } else { |
| 124 | + children[idx].remove(key); |
| 125 | + } |
| 126 | + } |
| 127 | + } |
| 128 | + |
| 129 | + private int findKey(int key) { |
| 130 | + int idx = 0; |
| 131 | + while (idx < n && keys[idx] < key) { |
| 132 | + ++idx; |
| 133 | + } |
| 134 | + return idx; |
| 135 | + } |
| 136 | + |
| 137 | + private void removeFromLeaf(int idx) { |
| 138 | + for (int i = idx + 1; i < n; ++i) { |
| 139 | + keys[i - 1] = keys[i]; |
| 140 | + } |
| 141 | + n--; |
| 142 | + } |
| 143 | + |
| 144 | + private void removeFromNonLeaf(int idx) { |
| 145 | + int key = keys[idx]; |
| 146 | + if (children[idx].n >= t) { |
| 147 | + int pred = getPredecessor(idx); |
| 148 | + keys[idx] = pred; |
| 149 | + children[idx].remove(pred); |
| 150 | + } else if (children[idx + 1].n >= t) { |
| 151 | + int succ = getSuccessor(idx); |
| 152 | + keys[idx] = succ; |
| 153 | + children[idx + 1].remove(succ); |
| 154 | + } else { |
| 155 | + merge(idx); |
| 156 | + children[idx].remove(key); |
| 157 | + } |
| 158 | + } |
| 159 | + |
| 160 | + private int getPredecessor(int idx) { |
| 161 | + BTreeNode cur = children[idx]; |
| 162 | + while (!cur.leaf) { |
| 163 | + cur = cur.children[cur.n]; |
| 164 | + } |
| 165 | + return cur.keys[cur.n - 1]; |
| 166 | + } |
| 167 | + |
| 168 | + private int getSuccessor(int idx) { |
| 169 | + BTreeNode cur = children[idx + 1]; |
| 170 | + while (!cur.leaf) { |
| 171 | + cur = cur.children[0]; |
| 172 | + } |
| 173 | + return cur.keys[0]; |
| 174 | + } |
| 175 | + |
| 176 | + private void fill(int idx) { |
| 177 | + if (idx != 0 && children[idx - 1].n >= t) { |
| 178 | + borrowFromPrev(idx); |
| 179 | + } else if (idx != n && children[idx + 1].n >= t) { |
| 180 | + borrowFromNext(idx); |
| 181 | + } else { |
| 182 | + if (idx != n) { |
| 183 | + merge(idx); |
| 184 | + } else { |
| 185 | + merge(idx - 1); |
| 186 | + } |
| 187 | + } |
| 188 | + } |
| 189 | + |
| 190 | + private void borrowFromPrev(int idx) { |
| 191 | + BTreeNode child = children[idx]; |
| 192 | + BTreeNode sibling = children[idx - 1]; |
| 193 | + |
| 194 | + for (int i = child.n - 1; i >= 0; --i) { |
| 195 | + child.keys[i + 1] = child.keys[i]; |
| 196 | + } |
| 197 | + |
| 198 | + if (!child.leaf) { |
| 199 | + for (int i = child.n; i >= 0; --i) { |
| 200 | + child.children[i + 1] = child.children[i]; |
| 201 | + } |
| 202 | + } |
| 203 | + |
| 204 | + child.keys[0] = keys[idx - 1]; |
| 205 | + |
| 206 | + if (!child.leaf) { |
| 207 | + child.children[0] = sibling.children[sibling.n]; |
| 208 | + } |
| 209 | + |
| 210 | + keys[idx - 1] = sibling.keys[sibling.n - 1]; |
| 211 | + |
| 212 | + child.n += 1; |
| 213 | + sibling.n -= 1; |
| 214 | + } |
| 215 | + |
| 216 | + private void borrowFromNext(int idx) { |
| 217 | + BTreeNode child = children[idx]; |
| 218 | + BTreeNode sibling = children[idx + 1]; |
| 219 | + |
| 220 | + child.keys[child.n] = keys[idx]; |
| 221 | + |
| 222 | + if (!child.leaf) { |
| 223 | + child.children[child.n + 1] = sibling.children[0]; |
| 224 | + } |
| 225 | + |
| 226 | + keys[idx] = sibling.keys[0]; |
| 227 | + |
| 228 | + for (int i = 1; i < sibling.n; ++i) { |
| 229 | + sibling.keys[i - 1] = sibling.keys[i]; |
| 230 | + } |
| 231 | + |
| 232 | + if (!sibling.leaf) { |
| 233 | + for (int i = 1; i <= sibling.n; ++i) { |
| 234 | + sibling.children[i - 1] = sibling.children[i]; |
| 235 | + } |
| 236 | + } |
| 237 | + |
| 238 | + child.n += 1; |
| 239 | + sibling.n -= 1; |
| 240 | + } |
| 241 | + |
| 242 | + private void merge(int idx) { |
| 243 | + BTreeNode child = children[idx]; |
| 244 | + BTreeNode sibling = children[idx + 1]; |
| 245 | + |
| 246 | + child.keys[t - 1] = keys[idx]; |
| 247 | + |
| 248 | + for (int i = 0; i < sibling.n; ++i) { |
| 249 | + child.keys[i + t] = sibling.keys[i]; |
| 250 | + } |
| 251 | + |
| 252 | + if (!child.leaf) { |
| 253 | + for (int i = 0; i <= sibling.n; ++i) { |
| 254 | + child.children[i + t] = sibling.children[i]; |
| 255 | + } |
| 256 | + } |
| 257 | + |
| 258 | + for (int i = idx + 1; i < n; ++i) { |
| 259 | + keys[i - 1] = keys[i]; |
| 260 | + } |
| 261 | + |
| 262 | + for (int i = idx + 2; i <= n; ++i) { |
| 263 | + children[i - 1] = children[i]; |
| 264 | + } |
| 265 | + |
| 266 | + child.n += sibling.n + 1; |
| 267 | + n--; |
| 268 | + } |
| 269 | + } |
| 270 | + |
| 271 | + private BTreeNode root; |
| 272 | + private final int t; |
| 273 | + |
| 274 | + public BTree(int t) { |
| 275 | + this.root = null; |
| 276 | + this.t = t; |
| 277 | + } |
| 278 | + |
| 279 | + public void traverse(ArrayList<Integer> result) { |
| 280 | + if (root != null) { |
| 281 | + root.traverse(result); |
| 282 | + } |
| 283 | + } |
| 284 | + |
| 285 | + public boolean search(int key) { |
| 286 | + return root != null && root.search(key) != null; |
| 287 | + } |
| 288 | + |
| 289 | + public void insert(int key) { |
| 290 | + if (search(key)) { |
| 291 | + return; |
| 292 | + } |
| 293 | + if (root == null) { |
| 294 | + root = new BTreeNode(t, true); |
| 295 | + root.keys[0] = key; |
| 296 | + root.n = 1; |
| 297 | + } else { |
| 298 | + if (root.n == 2 * t - 1) { |
| 299 | + BTreeNode s = new BTreeNode(t, false); |
| 300 | + s.children[0] = root; |
| 301 | + s.splitChild(0, root); |
| 302 | + int i = 0; |
| 303 | + if (s.keys[0] < key) { |
| 304 | + i++; |
| 305 | + } |
| 306 | + s.children[i].insertNonFull(key); |
| 307 | + root = s; |
| 308 | + } else { |
| 309 | + root.insertNonFull(key); |
| 310 | + } |
| 311 | + } |
| 312 | + } |
| 313 | + |
| 314 | + public void delete(int key) { |
| 315 | + if (root == null) { |
| 316 | + return; |
| 317 | + } |
| 318 | + root.remove(key); |
| 319 | + if (root.n == 0) { |
| 320 | + root = root.leaf ? null : root.children[0]; |
| 321 | + } |
| 322 | + } |
| 323 | +} |
0 commit comments