|
| 1 | +package com.thealgorithms.datastructures.trees; |
| 2 | + |
| 3 | +import java.util.LinkedList; |
| 4 | +import java.util.List; |
| 5 | + |
| 6 | +/** |
| 7 | + * Implementation of a Splay Tree data structure. |
| 8 | + * |
| 9 | + * <p> |
| 10 | + * A splay tree is a self-adjusting binary search tree with the additional property |
| 11 | + * that recently accessed elements are quick to access again. It performs basic |
| 12 | + * operations such as insertion, deletion, and searching in O(log n) amortized time, |
| 13 | + * where n is the number of elements in the tree. |
| 14 | + * </p> |
| 15 | + * |
| 16 | + * <p> |
| 17 | + * The key feature of splay trees is the splay operation, which moves a node closer |
| 18 | + * to the root of the tree when it is accessed. This operation helps to maintain |
| 19 | + * good balance and improves the overall performance of the tree. After performing |
| 20 | + * a splay operation, the accessed node becomes the new root of the tree. |
| 21 | + * </p> |
| 22 | + * |
| 23 | + * <p> |
| 24 | + * Splay trees have applications in various areas, including caching, network routing, |
| 25 | + * and dynamic optimality analysis. |
| 26 | + * </p> |
| 27 | + */ |
| 28 | +public class SplayTree { |
| 29 | + |
| 30 | + private static class Node { |
| 31 | + int key; |
| 32 | + Node left, right; |
| 33 | + |
| 34 | + Node(int key) { |
| 35 | + this.key = key; |
| 36 | + left = right = null; |
| 37 | + } |
| 38 | + } |
| 39 | + |
| 40 | + private Node root; |
| 41 | + |
| 42 | + /** |
| 43 | + * Constructs an empty SplayTree. |
| 44 | + */ |
| 45 | + public SplayTree() { |
| 46 | + root = null; |
| 47 | + } |
| 48 | + |
| 49 | + /** |
| 50 | + * Zig operation. |
| 51 | + * |
| 52 | + * <p> |
| 53 | + * The zig operation is used to perform a single rotation on a node to move it closer to |
| 54 | + * the root of the tree. It is typically applied when the node is a left child of its parent |
| 55 | + * and needs to be rotated to the right. |
| 56 | + * </p> |
| 57 | + * |
| 58 | + * @param x The node to perform the zig operation on. |
| 59 | + * @return The new root node after the operation. |
| 60 | + */ |
| 61 | + private Node rotateRight(Node x) { |
| 62 | + Node y = x.left; |
| 63 | + x.left = y.right; |
| 64 | + y.right = x; |
| 65 | + return y; |
| 66 | + } |
| 67 | + |
| 68 | + /** |
| 69 | + * Zag operation. |
| 70 | + * |
| 71 | + * <p> |
| 72 | + * The zag operation is used to perform a single rotation on a node to move it closer to |
| 73 | + * the root of the tree. It is typically applied when the node is a right child of its parent |
| 74 | + * and needs to be rotated to the left. |
| 75 | + * </p> |
| 76 | + * |
| 77 | + * @param x The node to perform the zag operation on. |
| 78 | + * @return The new root node after the operation. |
| 79 | + */ |
| 80 | + private Node rotateLeft(Node x) { |
| 81 | + Node y = x.right; |
| 82 | + x.right = y.left; |
| 83 | + y.left = x; |
| 84 | + return y; |
| 85 | + } |
| 86 | + |
| 87 | + /** |
| 88 | + * Splay operation. |
| 89 | + * |
| 90 | + * <p> |
| 91 | + * The splay operation is the core operation of a splay tree. It moves a specified node |
| 92 | + * closer to the root of the tree by performing a series of rotations. The goal of the splay |
| 93 | + * operation is to improve the access time for frequently accessed nodes by bringing them |
| 94 | + * closer to the root. |
| 95 | + * </p> |
| 96 | + * |
| 97 | + * <p> |
| 98 | + * The splay operation consists of three main cases: |
| 99 | + * <ul> |
| 100 | + * <li>Zig-Zig case: Perform two consecutive rotations.</li> |
| 101 | + * <li>Zig-Zag case: Perform two consecutive rotations in opposite directions.</li> |
| 102 | + * <li>Zag-Zag case: Perform two consecutive rotations.</li> |
| 103 | + * </ul> |
| 104 | + * </p> |
| 105 | + * |
| 106 | + * <p> |
| 107 | + * After performing the splay operation, the accessed node becomes the new root of the tree. |
| 108 | + * </p> |
| 109 | + * |
| 110 | + * @param root The root of the subtree to splay. |
| 111 | + * @param key The key to splay around. |
| 112 | + * @return The new root of the splayed subtree. |
| 113 | + */ |
| 114 | + private Node splay(Node root, int key) { |
| 115 | + if (root == null || root.key == key) return root; |
| 116 | + |
| 117 | + if (root.key > key) { |
| 118 | + if (root.left == null) return root; |
| 119 | + // Zig-Zig case |
| 120 | + if (root.left.key > key) { |
| 121 | + // Recursive call to splay on grandchild |
| 122 | + root.left.left = splay(root.left.left, key); |
| 123 | + // Perform zig operation on parent |
| 124 | + root = rotateRight(root); |
| 125 | + } // Zig-Zag case |
| 126 | + else if (root.left.key < key) { |
| 127 | + // Recursive call to splay on grandchild |
| 128 | + root.left.right = splay(root.left.right, key); |
| 129 | + // Perform zag operation on parent |
| 130 | + if (root.left.right != null) root.left = rotateLeft(root.left); |
| 131 | + } |
| 132 | + |
| 133 | + return (root.left == null) ? root : rotateRight(root); |
| 134 | + } else { |
| 135 | + if (root.right == null) return root; |
| 136 | + // Zag-Zag case |
| 137 | + if (root.right.key > key) { |
| 138 | + // Recursive call to splay on grandchild |
| 139 | + root.right.left = splay(root.right.left, key); |
| 140 | + // Perform zig operation on parent |
| 141 | + if (root.right.left != null) root.right = rotateRight(root.right); |
| 142 | + } // Zag-Zig case |
| 143 | + else if (root.right.key < key) { |
| 144 | + // Recursive call to splay on grandchild |
| 145 | + root.right.right = splay(root.right.right, key); |
| 146 | + // Perform zag operation on parent |
| 147 | + root = rotateLeft(root); |
| 148 | + } |
| 149 | + |
| 150 | + return (root.right == null) ? root : rotateLeft(root); |
| 151 | + } |
| 152 | + } |
| 153 | + |
| 154 | + /** |
| 155 | + * Insert a key into the SplayTree. |
| 156 | + * |
| 157 | + * @param key The key to insert. |
| 158 | + */ |
| 159 | + public void insert(int key) { |
| 160 | + root = insertRec(root, key); |
| 161 | + root = splay(root, key); |
| 162 | + } |
| 163 | + |
| 164 | + /** |
| 165 | + * Recursive function to insert a key. |
| 166 | + * |
| 167 | + * @param root The root of the subtree to insert the key into. |
| 168 | + * @param key The key to insert. |
| 169 | + * @return The root of the modified subtree. |
| 170 | + */ |
| 171 | + private Node insertRec(Node root, int key) { |
| 172 | + if (root == null) return new Node(key); |
| 173 | + |
| 174 | + if (root.key > key) { |
| 175 | + root.left = insertRec(root.left, key); |
| 176 | + } else if (root.key < key) { |
| 177 | + root.right = insertRec(root.right, key); |
| 178 | + } |
| 179 | + |
| 180 | + return root; |
| 181 | + } |
| 182 | + |
| 183 | + /** |
| 184 | + * Search for a key in the SplayTree. |
| 185 | + * |
| 186 | + * @param key The key to search for. |
| 187 | + * @return True if the key is found, otherwise false. |
| 188 | + */ |
| 189 | + public boolean search(int key) { |
| 190 | + root = splay(root, key); |
| 191 | + return root != null && root.key == key; |
| 192 | + } |
| 193 | + |
| 194 | + /** |
| 195 | + * Delete a key from the SplayTree. |
| 196 | + * |
| 197 | + * @param key The key to delete. |
| 198 | + */ |
| 199 | + public void delete(int key) { |
| 200 | + root = deleteRec(root, key); |
| 201 | + } |
| 202 | + |
| 203 | + /** |
| 204 | + * Recursive function to delete a key. |
| 205 | + * |
| 206 | + * @param root The root of the subtree to delete the key from. |
| 207 | + * @param key The key to delete. |
| 208 | + * @return The root of the modified subtree. |
| 209 | + */ |
| 210 | + private Node deleteRec(Node root, int key) { |
| 211 | + if (root == null) return null; |
| 212 | + |
| 213 | + if (root.key > key) { |
| 214 | + root.left = deleteRec(root.left, key); |
| 215 | + } else if (root.key < key) { |
| 216 | + root.right = deleteRec(root.right, key); |
| 217 | + } else { |
| 218 | + // Found the node to delete |
| 219 | + if (root.left == null) |
| 220 | + return root.right; |
| 221 | + else if (root.right == null) |
| 222 | + return root.left; |
| 223 | + |
| 224 | + // Node with two children: Get the inorder successor (smallest in the right subtree) |
| 225 | + root.key = minValue(root.right); |
| 226 | + |
| 227 | + // Delete the inorder successor |
| 228 | + root.right = deleteRec(root.right, root.key); |
| 229 | + } |
| 230 | + |
| 231 | + return root; |
| 232 | + } |
| 233 | + |
| 234 | + /** |
| 235 | + * Find the minimum value in a subtree. |
| 236 | + * |
| 237 | + * @param root The root of the subtree to find the minimum value in. |
| 238 | + * @return The minimum value in the subtree. |
| 239 | + */ |
| 240 | + private int minValue(Node root) { |
| 241 | + int minValue = root.key; |
| 242 | + while (root.left != null) { |
| 243 | + minValue = root.left.key; |
| 244 | + root = root.left; |
| 245 | + } |
| 246 | + return minValue; |
| 247 | + } |
| 248 | + |
| 249 | + /** |
| 250 | + * Perform an in-order traversal of the SplayTree. |
| 251 | + * |
| 252 | + * @return A vector containing the keys in in-order traversal order. |
| 253 | + */ |
| 254 | + public List<Integer> inOrder() { |
| 255 | + List<Integer> result = new LinkedList<>(); |
| 256 | + inOrderRec(root, result); |
| 257 | + return result; |
| 258 | + } |
| 259 | + |
| 260 | + /** |
| 261 | + * Recursive function for in-order traversal. |
| 262 | + * |
| 263 | + * @param root The root of the subtree to traverse. |
| 264 | + * @param result The vector to store the traversal result. |
| 265 | + */ |
| 266 | + private void inOrderRec(Node root, List<Integer> result) { |
| 267 | + if (root != null) { |
| 268 | + inOrderRec(root.left, result); |
| 269 | + result.add(root.key); |
| 270 | + inOrderRec(root.right, result); |
| 271 | + } |
| 272 | + } |
| 273 | + |
| 274 | + /** |
| 275 | + * Perform a pre-order traversal of the SplayTree. |
| 276 | + * |
| 277 | + * @return A vector containing the keys in pre-order traversal order. |
| 278 | + */ |
| 279 | + public List<Integer> preOrder() { |
| 280 | + List<Integer> result = new LinkedList<>(); |
| 281 | + preOrderRec(root, result); |
| 282 | + return result; |
| 283 | + } |
| 284 | + |
| 285 | + /** |
| 286 | + * Recursive function for pre-order traversal. |
| 287 | + * |
| 288 | + * @param root The root of the subtree to traverse. |
| 289 | + * @param result The vector to store the traversal result. |
| 290 | + */ |
| 291 | + private void preOrderRec(Node root, List<Integer> result) { |
| 292 | + if (root != null) { |
| 293 | + result.add(root.key); |
| 294 | + preOrderRec(root.left, result); |
| 295 | + preOrderRec(root.right, result); |
| 296 | + } |
| 297 | + } |
| 298 | + |
| 299 | + /** |
| 300 | + * Perform a post-order traversal of the SplayTree. |
| 301 | + * |
| 302 | + * @return A vector containing the keys in post-order traversal order. |
| 303 | + */ |
| 304 | + public List<Integer> postOrder() { |
| 305 | + List<Integer> result = new LinkedList<>(); |
| 306 | + postOrderRec(root, result); |
| 307 | + return result; |
| 308 | + } |
| 309 | + |
| 310 | + /** |
| 311 | + * Recursive function for post-order traversal. |
| 312 | + * |
| 313 | + * @param root The root of the subtree to traverse. |
| 314 | + * @param result The vector to store the traversal result. |
| 315 | + */ |
| 316 | + private void postOrderRec(Node root, List<Integer> result) { |
| 317 | + if (root != null) { |
| 318 | + postOrderRec(root.left, result); |
| 319 | + postOrderRec(root.right, result); |
| 320 | + result.add(root.key); |
| 321 | + } |
| 322 | + } |
| 323 | +} |
0 commit comments