|
| 1 | +/** |
| 2 | + * |
| 3 | + * Java implementation of Matrix fast power |
| 4 | + * It can calculate the high power of constant Matrix with O( log(K) ) |
| 5 | + * where K is the power of the Matrix |
| 6 | + * |
| 7 | + * In order to do that, Matrix must be square Matrix ( columns equals rows) |
| 8 | + * |
| 9 | + * Notice : large power of Matrix may cause overflow |
| 10 | + * |
| 11 | + * |
| 12 | + * other Matrix basic operator is based on @author Kyler Smith, 2017 |
| 13 | + * |
| 14 | + * @author DDullahan, 2018 |
| 15 | + * |
| 16 | + */ |
| 17 | + |
| 18 | +class MatrixFastPower { |
| 19 | + |
| 20 | + /** |
| 21 | + * Matrix Fast Power |
| 22 | + * |
| 23 | + * @param matrix : square Matrix |
| 24 | + * @param k : power of Matrix |
| 25 | + * @return product |
| 26 | + */ |
| 27 | + public static Matrix FastPower(Matrix matrix, int k) throws RuntimeException { |
| 28 | + |
| 29 | + if(matrix.getColumns() != matrix.getRows()) |
| 30 | + throw new RuntimeException("Matrix is not square Matrix."); |
| 31 | + |
| 32 | + int[][] newData = new int[matrix.getColumns()][matrix.getRows()]; |
| 33 | + |
| 34 | + for(int i = 0; i < matrix.getColumns(); i++) |
| 35 | + newData[i][i] = 1; |
| 36 | + |
| 37 | + Matrix newMatrix = new Matrix(newData), |
| 38 | + coMatrix = new Matrix(matrix.data); |
| 39 | + |
| 40 | + while(k != 0) { |
| 41 | + |
| 42 | + if((k & 1) != 0) |
| 43 | + newMatrix = newMatrix.multiply(coMatrix); |
| 44 | + |
| 45 | + k >>= 1; |
| 46 | + coMatrix = coMatrix.multiply(coMatrix); |
| 47 | + |
| 48 | + } |
| 49 | + |
| 50 | + return newMatrix; |
| 51 | + } |
| 52 | + |
| 53 | + public static void main(String[] argv) { |
| 54 | + |
| 55 | + int[][] data = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}; |
| 56 | + Matrix matrix = new Matrix(data); |
| 57 | + |
| 58 | + System.out.println("original matrix : "); |
| 59 | + System.out.println(matrix.toString()); |
| 60 | + |
| 61 | + matrix = MatrixFastPower.FastPower(matrix, 5); |
| 62 | + |
| 63 | + System.out.println("after power : "); |
| 64 | + System.out.println(matrix.toString()); |
| 65 | + |
| 66 | + matrix = MatrixFastPower.FastPower(matrix, 1000000); |
| 67 | + |
| 68 | + System.out.println("notice, large power may cause overflow : "); |
| 69 | + System.out.print(matrix.toString()); |
| 70 | + System.out.println("you can use mod to fix that :-) "); |
| 71 | + |
| 72 | + } |
| 73 | +} |
| 74 | +class Matrix { |
| 75 | + public int[][] data; |
| 76 | + |
| 77 | + /** |
| 78 | + * Constructor for the matrix takes in a 2D array |
| 79 | + * |
| 80 | + * @param pData |
| 81 | + */ |
| 82 | + public Matrix(int[][] pData) { |
| 83 | + |
| 84 | + /** Make a deep copy of the data */ |
| 85 | + if(pData.length != 0) { |
| 86 | + int[][] newData = new int[pData.length][pData[0].length]; |
| 87 | + |
| 88 | + for(int i = 0; i < pData.length; i++) |
| 89 | + for(int j = 0; j < pData[0].length; j++) |
| 90 | + newData[i][j] = pData[i][j]; |
| 91 | + |
| 92 | + this.data = newData; |
| 93 | + } else { |
| 94 | + this.data = null; |
| 95 | + } |
| 96 | + } |
| 97 | + |
| 98 | + /** |
| 99 | + * Returns the element specified by the given location |
| 100 | + * |
| 101 | + * @param x : x cooridinate |
| 102 | + * @param y : y cooridinate |
| 103 | + * @return int : value at location |
| 104 | + */ |
| 105 | + public int getElement(int x, int y) { |
| 106 | + return data[x][y]; |
| 107 | + } |
| 108 | + |
| 109 | + /** |
| 110 | + * Returns the number of rows in the Matrix |
| 111 | + * |
| 112 | + * @return rows |
| 113 | + */ |
| 114 | + public int getRows() { |
| 115 | + if(this.data == null) |
| 116 | + return 0; |
| 117 | + |
| 118 | + return data.length; |
| 119 | + } |
| 120 | + |
| 121 | + /** |
| 122 | + * Returns the number of rows in the Matrix |
| 123 | + * |
| 124 | + * @return columns |
| 125 | + */ |
| 126 | + public int getColumns() { |
| 127 | + if(this.data == null) |
| 128 | + return 0; |
| 129 | + |
| 130 | + return data[0].length; |
| 131 | + } |
| 132 | + |
| 133 | + /** |
| 134 | + * Multiplies this matrix with another matrix. |
| 135 | + * |
| 136 | + * @param other : Matrix to be multiplied with |
| 137 | + * @return product |
| 138 | + */ |
| 139 | + public Matrix multiply(Matrix other) throws RuntimeException { |
| 140 | + |
| 141 | + int[][] newData = new int[this.data.length][other.getColumns()]; |
| 142 | + |
| 143 | + if(this.getColumns() != other.getRows()) |
| 144 | + throw new RuntimeException("The two matrices cannot be multiplied."); |
| 145 | + |
| 146 | + int sum; |
| 147 | + |
| 148 | + for (int i = 0; i < this.getRows(); ++i) |
| 149 | + for(int j = 0; j < other.getColumns(); ++j) { |
| 150 | + sum = 0; |
| 151 | + |
| 152 | + for(int k = 0; k < this.getColumns(); ++k) { |
| 153 | + sum += this.data[i][k] * other.getElement(k, j); |
| 154 | + } |
| 155 | + |
| 156 | + newData[i][j] = sum; |
| 157 | + } |
| 158 | + |
| 159 | + return new Matrix(newData); |
| 160 | + } |
| 161 | + |
| 162 | + /** |
| 163 | + * Returns the Matrix as a String in the following format |
| 164 | + * |
| 165 | + * [ a b c ] ... |
| 166 | + * [ x y z ] ... |
| 167 | + * [ i j k ] ... |
| 168 | + * ... |
| 169 | + * |
| 170 | + * @return Matrix as String |
| 171 | + * TODO: Work formatting for different digit sizes |
| 172 | + */ |
| 173 | + public String toString() { |
| 174 | + String str = ""; |
| 175 | + |
| 176 | + for(int i = 0; i < this.data.length; i++) { |
| 177 | + str += "[ "; |
| 178 | + |
| 179 | + for(int j = 0; j < this.data[0].length; j++) { |
| 180 | + str += data[i][j]; |
| 181 | + str += " "; |
| 182 | + } |
| 183 | + |
| 184 | + str += "]"; |
| 185 | + str += "\n"; |
| 186 | + } |
| 187 | + |
| 188 | + return str; |
| 189 | + } |
| 190 | + |
| 191 | +} |
0 commit comments