|
7 | 7 | */
|
8 | 8 | public class MatrixMultiplicationVerifier {
|
9 | 9 |
|
10 |
| - private MatrixMultiplicationVerifier() { |
| 10 | + private MatrixMultiplicationVerifier() { |
11 | 11 | throw new UnsupportedOperationException("Utility class");
|
12 | 12 | }
|
13 | 13 |
|
14 |
| - /* |
15 |
| - It multiplies input matrix with randomized vector. |
16 |
| - @params matrix which is being multiplied currently with random vector |
17 |
| - @params random vector generate for every iteration. |
| 14 | + /* |
| 15 | + It multiplies input matrix with randomized vector. |
| 16 | + @params matrix which is being multiplied currently with random vector |
| 17 | + @params random vector generated for every iteration. |
18 | 18 |
|
19 |
| - This basically calculates dot product for every row, which is used to verify whether the product of matrices is valid or not. |
20 |
| - @returns matrix of calculated dot product. |
21 |
| - */ |
| 19 | + This basically calculates dot product for every row, which is used to verify whether the product of matrices is valid or not. |
| 20 | + @returns matrix of calculated dot product. |
| 21 | + */ |
22 | 22 | static int[] multiply(int[][] matrix, int[] vector) {
|
23 |
| - int n=vector.length, result[]=new int[n]; |
24 |
| - for(int i=0;i<n;i++) |
25 |
| - for(int j=0;j<n;j++) |
26 |
| - result[i]+=matrix[i][j]*vector[j]; |
| 23 | + int n = vector.length, result[] = new int[n]; |
| 24 | + for (int i = 0; i < n; i++) |
| 25 | + for (int j = 0; j < n; j++) |
| 26 | + result[i] += matrix[i][j] * vector[j]; |
27 | 27 | return result;
|
28 | 28 | }
|
29 | 29 |
|
30 |
| - /* |
31 |
| - @actual function that performs verification function |
32 |
| - @params, all three input matrices of int type, number of iterations |
33 |
| - */ |
| 30 | + /* |
| 31 | + Actual function that performs verification function |
| 32 | + @params, all three input matrices of int type, number of iterations |
| 33 | + */ |
34 | 34 | public static boolean verify(int[][] A, int[][] B, int[][] C, int iterations) {
|
35 |
| - if (A.length==0 || B.length==0 || C.length==0 || A[0].length==0 || B[0].length==0 || C[0].length==0) { |
36 |
| - return A.length==B[0].length && B.length==C.length && C[0].length==A[0].length; // Basic dimension consistency check |
| 35 | + if (A.length == 0 || B.length == 0 || C.length == 0 || A[0].length == 0 || B[0].length == 0 || C[0].length == 0) { |
| 36 | + return A.length == B[0].length && B.length == C.length && C[0].length == A[0].length; // Basic dimension consistency check |
37 | 37 | }
|
38 |
| - //Basic integrity checks on number of iterations. |
39 |
| - if (iterations<=0) { |
| 38 | + // Basic integrity checks on number of iterations. |
| 39 | + if (iterations <= 0) { |
40 | 40 | throw new IllegalArgumentException("Number of iterations must be positive");
|
41 | 41 | }
|
42 |
| - int n = A.length; |
43 |
| - if (iterations>2*n) { |
44 |
| - throw new IllegalArgumentException("Number of iterations should not exceed 2 * n where n is the matrix size"); |
45 |
| - } |
| 42 | + int n = A.length; |
| 43 | + if (iterations > 2 * n) { |
| 44 | + throw new IllegalArgumentException("Number of iterations should not exceed 2 * n where n is the matrix size"); |
| 45 | + } |
46 | 46 |
|
47 |
| - // Actual logic to verify the multiplication |
48 |
| - int n=A.length; Random rand=new Random(); |
49 |
| - for(int t=0;t<iterations;t++) { |
50 |
| - int[] randomizedVector=new int[n]; |
51 |
| - //This generates a random binary vector of first dimension of C matrix(Output Matrix). |
52 |
| - for(int i=0;i<n;i++) r[i]=rand.nextInt(2); |
53 |
| - int[] Br=multiply(B,r), ABr=multiply(A,Br), Cr=multiply(C,r); |
54 |
| - for(int i=0;i<n;i++) |
55 |
| - if(ABr[i]!=Cr[i]) return false; // if any product mismatches, return condition. |
| 47 | + // Actual logic to verify the multiplication |
| 48 | + Random rand = new Random(); |
| 49 | + for (int t = 0; t < iterations; t++) { |
| 50 | + int[] r = new int[n]; |
| 51 | + // This generates a random binary vector of the first dimension of C matrix (Output Matrix). |
| 52 | + for (int i = 0; i < n; i++) r[i] = rand.nextInt(2); |
| 53 | + int[] Br = multiply(B, r), ABr = multiply(A, Br), Cr = multiply(C, r); |
| 54 | + for (int i = 0; i < n; i++) |
| 55 | + if (ABr[i] != Cr[i]) return false; // If any product mismatches, return condition. |
56 | 56 | }
|
57 | 57 | return true;
|
58 | 58 | }
|
59 | 59 |
|
| 60 | + /* |
| 61 | + It multiplies input matrix of double type with randomized vector. |
| 62 | + @params matrix which is being multiplied currently with random vector. |
| 63 | + @params random vector generated for every iteration. |
60 | 64 |
|
61 |
| - /* |
62 |
| - It multiplies input matrix of double type with randomized vector. |
63 |
| - @params matrix which is being multiplied currently with random vector. |
64 |
| - @params random vector generated for every iteration. |
| 65 | + This basically calculates dot product for every row, which is used to verify whether the product of matrices is valid or not. |
| 66 | + */ |
| 67 | + static double[] multiply(double[][] matrix, double[] vector) { |
| 68 | + int n = vector.length; |
| 69 | + double[] result = new double[n]; |
| 70 | + for (int i = 0; i < n; i++) |
| 71 | + for (int j = 0; j < n; j++) |
| 72 | + result[i] += matrix[i][j] * vector[j]; |
| 73 | + return result; |
| 74 | + } |
65 | 75 |
|
66 |
| - This basically calculates dot product for every row, which is used to verify whether the product of matrices is valid or not. |
67 |
| -*/ |
68 |
| -static double[] multiply(double[][] matrix,double[] vector) { |
69 |
| - int n=vector.length; |
70 |
| - double[] result = new double[n]; |
71 |
| - for(int i=0;i<n;i++) |
72 |
| - for(int j=0;j<n;j++) |
73 |
| - result[i] += matrix[i][j] * vector[j]; |
74 |
| - return result; |
75 |
| -} |
| 76 | + /* |
| 77 | + Actual function that performs the verification. |
| 78 | + @params, all three input matrices of double type, number of iterations |
| 79 | + */ |
| 80 | + public static boolean verify(double[][] A, double[][] B, double[][] C, int iterations) { |
| 81 | + if (A.length == 0 || B.length == 0 || C.length == 0 || A[0].length == 0 || B[0].length == 0 || C[0].length == 0) { |
| 82 | + return A.length == B[0].length && B.length == C.length && C[0].length == A[0].length; // Basic dimension consistency check |
| 83 | + } |
| 84 | + // Basic integrity checks on number of iterations. |
| 85 | + if (iterations <= 0) { |
| 86 | + throw new IllegalArgumentException("Number of iterations must be positive"); |
| 87 | + } |
| 88 | + int m = A.length; |
| 89 | + if (iterations > 2 * m) { |
| 90 | + throw new IllegalArgumentException("Number of iterations should not exceed 2 times m where n is the matrix size"); |
| 91 | + } |
76 | 92 |
|
77 |
| -/* |
78 |
| - Actual function that performs the verification. |
79 |
| - @params, all three input matrices of double type, number of iterations |
80 |
| -*/ |
81 |
| -public static boolean verify(double[][] A,double[][] B,double[][] C,int iterations) { |
82 |
| - if (A.length==0 || B.length==0 || C.length==0 || A[0].length==0 || B[0].length==0 || C[0].length==0) { |
83 |
| - return A.length==B[0].length && B.length==C.length && C[0].length==A[0].length; // Basic dimension consistency check |
84 |
| - } |
85 |
| - // Basic integrity checks on number of iterations. |
86 |
| - if (iterations<=0) { |
87 |
| - throw new IllegalArgumentException("Number of iterations must be positive"); |
88 |
| - } |
89 |
| - int n=A.length; |
90 |
| - if (iterations>2*n) { |
91 |
| - throw new IllegalArgumentException("Number of iterations should not exceed 2 * n where n is the matrix size"); |
92 |
| - } |
| 93 | + // Actual logic to verify the multiplication |
| 94 | + Random rand = new Random(); |
| 95 | + for (int t = 0; t < iterations; t++) { |
| 96 | + double[] randomizedVector = new double[m]; |
| 97 | + // This generates a random binary vector of the first dimension of C matrix (Output Matrix). |
| 98 | + for (int i = 0; i < m; i++) |
| 99 | + randomizedVector[i] = rand.nextInt(2); // Random binary values 0 or 1 |
93 | 100 |
|
94 |
| - // Actual logic to verify the multiplication |
95 |
| - Random rand=new Random(); |
96 |
| - for(int t=0;t<iterations;t++) { |
97 |
| - double[] randomizedVector=new double[n]; |
98 |
| - // This generates a random binary vector of the first dimension of C matrix (Output Matrix). |
99 |
| - for(int i=0;i<n;i++) |
100 |
| - randomizedVector[i]=rand.nextInt(2); // Random binary values 0 or 1 |
101 |
| - |
102 |
| - double[] Br=multiply(B,randomizedVector); |
103 |
| - double[] ABr=multiply(A,Br); |
104 |
| - double[] Cr=multiply(C,randomizedVector); |
105 |
| - |
106 |
| - for(int i=0;i<n;i++) |
107 |
| - if(Math.abs(ABr[i]-Cr[i])>1e-9) // Allowing a small tolerance for floating-point comparisons |
108 |
| - return false; // If any product mismatches, return false. |
| 101 | + double[] Br = multiply(B, randomizedVector); |
| 102 | + double[] ABr = multiply(A, Br); |
| 103 | + double[] Cr = multiply(C, randomizedVector); |
| 104 | + |
| 105 | + for (int i = 0; i < m; i++) |
| 106 | + if (Math.abs(ABr[i] - Cr[i]) > 1e-9) // Allowing a small tolerance for floating-point comparisons |
| 107 | + return false; // If any product mismatches, return false. |
| 108 | + } |
| 109 | + return true; |
109 | 110 | }
|
110 |
| - return true; |
111 |
| -} |
112 | 111 | }
|
0 commit comments