diff --git a/DataStructures/Heaps/MinPriorityQueue.java b/DataStructures/Heaps/MinPriorityQueue.java new file mode 100644 index 000000000000..3dc2bd28083c --- /dev/null +++ b/DataStructures/Heaps/MinPriorityQueue.java @@ -0,0 +1,131 @@ + +/* Minimum Priority Queue +* It is a part of heap data structure +* A heap is a specific tree based data structure +* in which all the nodes of tree are in a specific order. +* that is the children are arranged in some +* respect of their parents, can either be greater +* or less than the parent. This makes it a min priority queue +* or max priority queue. +*/ + +// Functions: insert, delete, peek, isEmpty, print, heapSort, sink + +public class MinPriorityQueue { + private int[] heap; + private int capacity; + private int size; + + // calss the constructor and initializes the capacity + MinPriorityQueue(int c) { + this.capacity = c; + this.size = 0; + this.heap = new int[c + 1]; + } + + // inserts the key at the end and rearranges it + // so that the binary heap is in appropriate order + public void insert(int key) { + if (this.isFull()) + return; + this.heap[this.size + 1] = key; + int k = this.size + 1; + while (k > 1) { + if (this.heap[k] < this.heap[k / 2]) { + int temp = this.heap[k]; + this.heap[k] = this.heap[k / 2]; + this.heap[k / 2] = temp; + } + k = k / 2; + } + this.size++; + } + + // returns the highest priority value + public int peek() { + return this.heap[1]; + } + + // returns boolean value whether the heap is empty or not + public boolean isEmpty() { + if (0 == this.size) + return true; + return false; + } + + // returns boolean value whether the heap is full or not + public boolean isFull() { + if (this.size == this.capacity) + return true; + return false; + } + + // prints the heap + public void print() { + for (int i = 1; i <= this.capacity; i++) + System.out.print(this.heap[i] + " "); + System.out.println(); + } + + // heap sorting can be done by performing + // delete function to the number of times of the size of the heap + // it returns reverse sort because it is a min priority queue + public void heapSort() { + for (int i = 1; i < this.capacity; i++) + this.delete(); + } + + // this function reorders the heap after every delete function + private void sink() { + int k = 1; + while (2 * k <= this.size || 2 * k + 1 <= this.size) { + int minIndex; + if (this.heap[2 * k] >= this.heap[k]) { + if (2 * k + 1 <= this.size && this.heap[2 * k + 1] >= this.heap[k]) { + break; + } else if (2 * k + 1 > this.size) { + break; + } + } + if (2 * k + 1 > this.size) { + minIndex = this.heap[2 * k] < this.heap[k] ? 2 * k : k; + } else { + if (this.heap[k] > this.heap[2 * k] || this.heap[k] > this.heap[2 * k + 1]) { + minIndex = this.heap[2 * k] < this.heap[2 * k + 1] ? 2 * k : 2 * k + 1; + } else { + minIndex = k; + } + } + int temp = this.heap[k]; + this.heap[k] = this.heap[minIndex]; + this.heap[minIndex] = temp; + k = minIndex; + } + } + + // deletes the highest priority value from the heap + public int delete() { + int min = this.heap[1]; + this.heap[1] = this.heap[this.size]; + this.heap[this.size] = min; + this.size--; + this.sink(); + return min; + } + + public static void main(String[] args) { + // testing + MinPriorityQueue q = new MinPriorityQueue(8); + q.insert(5); + q.insert(2); + q.insert(4); + q.insert(1); + q.insert(7); + q.insert(6); + q.insert(3); + q.insert(8); + q.print(); // [ 1, 2, 3, 5, 7, 6, 4, 8 ] + q.heapSort(); + q.print(); // [ 8, 7, 6, 5, 4, 3, 2, 1 ] + } +} \ No newline at end of file