diff --git a/Maths/CheckKishnamurthyNumber.js b/Maths/CheckKishnamurthyNumber.js new file mode 100644 index 0000000000..bb283e68eb --- /dev/null +++ b/Maths/CheckKishnamurthyNumber.js @@ -0,0 +1,44 @@ +/* + Problem statement and Explanation : https://www.geeksforgeeks.org/check-if-a-number-is-a-krishnamurthy-number-or-not-2/ + + krishnamurthy number is a number the sum of the all fectorial of the all dights is equal to the number itself. + 145 => 1! + 4! + 5! = 1 + 24 + 120 = 145 +*/ + +// factorail utility method. +const factorial = (n) => { + let fact = 1 + while (n !== 0) { + fact = fact * n + n-- + } + return fact +} + +/** + * krishnamurthy number is a number the sum of the factorial of the all dights is equal to the number itself. + * @param {Number} number a number for checking is krishnamurthy number or not. + * @returns return correspond boolean vlaue, if the number is krishnamurthy number return `true` else return `false`. + * @example 145 => 1! + 4! + 5! = 1 + 24 + 120 = 145 + */ +const CheckKishnamurthyNumber = (number) => { + // firstly, check that input is a number or not. + if (typeof number !== 'number') { + return new TypeError('Argument is not a number.') + } + // create a variable to store the sum of all digits factorial. + let sumOfAllDigitFactorial = 0 + // convert the number to string for convenience. + let newNumber = number + // Extract number digits using the remainder method. + while (newNumber > 0) { + const lastDigit = newNumber % 10 + // calculate each digit factorial. + sumOfAllDigitFactorial += factorial(lastDigit) + newNumber = Math.floor(newNumber / 10) + } + // if the sumOftheFactorial is equal to the given number it means the number is a Krishnamurthy number. + return sumOfAllDigitFactorial === number +} + +module.exports = CheckKishnamurthyNumber diff --git a/Maths/CoPrimeCheck.js b/Maths/CoPrimeCheck.js new file mode 100644 index 0000000000..11aa7b89b9 --- /dev/null +++ b/Maths/CoPrimeCheck.js @@ -0,0 +1,40 @@ +/* + Problem statement and Explanation : https://en.wikipedia.org/wiki/Coprime_integers + + In number theory, two integers a and b are coprime, relatively prime or + mutually prime if the only positive integer that is a divisor of both + of them is Consequently, any prime number that divides one of a + or b does not divide the other. This is equivalent to their greatest + common divisor (gcd) being. One says also a is prime to b or a + is coprime with b. +*/ + +// Here we use a GetEuclidGCD method as a utility. +const GetEuclidGCD = (arg1, arg2) => { + let less = arg1 > arg2 ? arg2 : arg1 + for (less; less >= 2; less--) { + if ((arg1 % less === 0) && (arg2 % less === 0)) return (less) + } + return (less) +} + +// CoPrimeCheck function return the boolean in respect of the given number is co-prime or not. +/** + * CoPrimeCheck function return the boolean in respect of the given number is co-prime or not. + * @param {Number} firstNumber first number for checking is prime or not. + * @param {Number} secondNumber second number for checking is prime or not. + * @returns return correspond boolean value, if both number are co-prime return `true`, else return `false`. + */ +const CoPrimeCheck = (firstNumber, secondNumber) => { + // firstly, check that input is a number or not. + if (typeof firstNumber !== 'number' || typeof secondNumber !== 'number') { + return new TypeError('Argument is not a number.') + } + /* + This is the most efficient algorithm for checking co-primes + if the GCD of both the numbers is 1 that means they are co-primes. + */ + return GetEuclidGCD(firstNumber, secondNumber) === 1 +} + +module.exports = CoPrimeCheck