forked from adafruit/Raw-IR-decoder-for-Arduino
-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy pathPhilco.cpp
331 lines (299 loc) · 8.3 KB
/
Philco.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
#include <Arduino.h>
// Philco with remote KT-L12010C
bool decodePhilco(byte *bytes, int byteCount)
{
if (byteCount == 21 && bytes[0] == 0x83 && bytes[1] == 0x06) {
Serial.println(F("Looks like a Philco protocol"));
if (bytes[2] & 0x04 && bytes[15] == 0x01) {
Serial.println(F("POWER ON"));
}
{
Serial.print(F("Current time: "));
Serial.print(bytes[6] & 0x5F);
Serial.print(F(":"));
Serial.println(bytes[7]);
}
// Operating mode
if((bytes[4] & 0xF) == 0x02) {
switch (bytes[13]) {
case 0x07:
Serial.println(F("MODE COOL"));
break;
case 0xF1:
Serial.println(F("MODE DRY"));
break;
case 0xF7:
Serial.println(F("MODE FAN"));
break;
case 0xD2:
Serial.println(F("MODE HEAT"));
break;
}
} else if((bytes[3] & 0xF) == 0x1) {
Serial.println(F("MODE SMART"));
if((bytes[2] & 0xF0) == 0x00) {
Serial.println(F("SMART: --"));
} else if((bytes[2] & 0xF0) == 0x10 && bytes[16] == 0x00) {
Serial.println(F("SMART: 1"));
} else if((bytes[2] & 0xF0) == 0x50 && bytes[16] == 0x00) {
Serial.println(F("SMART: -1"));
} else if((bytes[2] & 0xF0) == 0x20) {
switch (bytes[16]) {
case 0x00:
Serial.println(F("SMART: 2"));
break;
case 0x04:
Serial.println(F("SMART: 3"));
break;
case 0x08:
Serial.println(F("SMART: 4"));
break;
case 0x0C:
Serial.println(F("SMART: 5"));
break;
case 0x10:
Serial.println(F("SMART: 6"));
break;
case 0x14:
Serial.println(F("SMART: 7"));
break;
}
} else if((bytes[2] & 0xF0) == 0x60) {
switch (bytes[16]) {
case 0x00:
Serial.println(F("SMART: -2"));
break;
case 0x04:
Serial.println(F("SMART: -3"));
break;
case 0x08:
Serial.println(F("SMART: -4"));
break;
case 0x0C:
Serial.println(F("SMART: -5"));
break;
case 0x10:
Serial.println(F("SMART: -6"));
break;
case 0x14:
Serial.println(F("SMART: -7"));
break;
}
}
}
if (bytes[3] == 0x73) {
Serial.println(F("MODE DRY"));
if((bytes[2] & 0xF0) == 0x00) {
Serial.println(F("DRY: --"));
} else if((bytes[2] & 0xF0) == 0x10 && bytes[16] == 0x00) {
Serial.println(F("DRY: 1"));
} else if((bytes[2] & 0xF0) == 0x50 && bytes[16] == 0x00) {
Serial.println(F("DRY: -1"));
} else if((bytes[2] & 0xF0) == 0x20) {
switch (bytes[16]) {
case 0x00:
Serial.println(F("DRY: 2"));
break;
case 0x04:
Serial.println(F("DRY: 3"));
break;
case 0x08:
Serial.println(F("DRY: 4"));
break;
case 0x0C:
Serial.println(F("DRY: 5"));
break;
case 0x10:
Serial.println(F("DRY: 6"));
break;
case 0x14:
Serial.println(F("DRY: 7"));
break;
}
} else if((bytes[2] & 0xF0) == 0x60) {
switch (bytes[16]) {
case 0x00:
Serial.println(F("DRY: -2"));
break;
case 0x04:
Serial.println(F("DRY: -3"));
break;
case 0x08:
Serial.println(F("DRY: -4"));
break;
case 0x0C:
Serial.println(F("DRY: -5"));
break;
case 0x10:
Serial.println(F("DRY: -6"));
break;
case 0x14:
Serial.println(F("DRY: -7"));
break;
}
}
}
// Temperature target
if ((bytes[3] & 0xF) == 0x2 || (bytes[3] & 0xF) == 0x0) {
Serial.print(F("Selected temperature: "));
Serial.print((bytes[3] >> 4) + 16);
Serial.println(F("°"));
}
// Temperature real
if(bytes[11] == 0x80) {
Serial.print(F("Current temperature: "));
Serial.print((bytes[12] & 0x0F) + 16);
Serial.println(F("°"));
}
// Fan speed
switch (bytes[2] & 0x03) {
case 0x00:
Serial.println(F("FAN: AUTO"));
break;
case 0x03:
Serial.println(F("FAN: 1 (low)"));
break;
case 0x02:
Serial.println(F("FAN: 2 (medium)"));
break;
case 0x01:
Serial.println(F("FAN: 3 (high)"));
break;
}
if (bytes[2] == 0x03 && bytes[14] == 0x04 && bytes[15] == 0x0B) {
Serial.println(F("QUIET: ON"));
} else if (bytes[14] == 0x00 && bytes[15] == 0x0B) {
Serial.println(F("QUIET: OFF)"));
}
// Air direction
if(bytes[8] == 0x80 && bytes[15] == 0x08) {
Serial.println(F("FIN: left to right"));
}
if(bytes[8] == 0x40 && bytes[15] == 0x07) {
Serial.println(F("FIN: up and down"));
}
if((bytes[2] & 0x0F) == 0x0B) {
// Sleep mode
switch (bytes[14]) {
case 0x00:
Serial.println(F("SLEEP: 1"));
break;
case 0x40:
Serial.println(F("SLEEP: 2"));
break;
case 0x80:
Serial.println(F("SLEEP: 3"));
break;
case 0xC0:
Serial.println(F("SLEEP: 4"));
break;
}
} else {
Serial.println(F("SLEEP: OFF"));
}
// Turbo mode
Serial.print(F("TURBO: "));
switch (bytes[5]) {
case 0x90:
case 0x10:
Serial.println(F("ON"));
break;
case 0x00:
Serial.println(F("OFF"));
break;
}
Serial.print(F("ECONOMY: "));
switch (bytes[14]) {
case 0x20:
Serial.println(F("ON"));
break;
case 0x00:
Serial.println(F("OFF"));
break;
}
// Ifeel mode
Serial.print(F("IFEEL: "));
switch (bytes[11]) {
case 0x80:
Serial.println(F("ON"));
break;
default:
Serial.println(F("OFF"));
break;
}
//Dimmer
if ((bytes[6] & 0x20)) {
Serial.println(F("DIMMER: ON"));
} else {
Serial.println(F("DIMMER: OFF"));
}
// Timer
byte hoursOff = bytes[8];
byte minutesOff = bytes[9] & 0x7F;
byte hoursOn = bytes[10];
byte minutesOn = bytes[11] & 0x7F;
if (bytes[9] & 0x80 && bytes[15] == 0x05) {
{
Serial.print(F("Activate TIMER ON at "));
Serial.print(hoursOn);
Serial.print(F(":"));
Serial.println(minutesOn);
}
{
Serial.print(F("TIMER OFF at "));
Serial.print(hoursOff);
Serial.print(F(":"));
Serial.println(minutesOff);
}
} else if (bytes[15] == 0x1D) {
{
Serial.print(F("Activate TIMER OFF at "));
Serial.print(hoursOff);
Serial.print(F(":"));
Serial.println(minutesOff);
}
{
Serial.print(F("TIMER ON at "));
Serial.print(hoursOn);
Serial.print(F(":"));
Serial.println(minutesOn);
}
} else if (bytes[10] == 0x00 && bytes[11] == 0x80 && bytes[15] == 0x05) {
Serial.println(F("Deactivate TIMER ON"));
} else if (bytes[8] == 0x00 && bytes[9] == 0x80 && bytes[15] == 0x1D) {
Serial.println(F("Deactivate TIMER OFF"));
}
{
byte originalChecksum = bytes[13];
byte calcuatedChecksum = 0x00;
for (int i = 2; i < 13; i++) {
calcuatedChecksum ^= bytes[i];
}
Serial.print(F("First checksum '0x"));
Serial.print(calcuatedChecksum, HEX);
if ( originalChecksum == calcuatedChecksum ) {
Serial.println(F("' matches"));
} else {
Serial.print(F("' does not match 0x"));
Serial.println(originalChecksum, HEX);
}
}
{
byte originalChecksum = bytes[20];
byte calcuatedChecksum = 0x00;
for (int i = 14; i < 20; i++) {
calcuatedChecksum ^= bytes[i];
}
Serial.print(F("Second checksum '0x"));
Serial.print(calcuatedChecksum, HEX);
if ( originalChecksum == calcuatedChecksum ) {
Serial.println(F("' matches"));
} else {
Serial.print(F("' does not match 0x"));
Serial.println(originalChecksum, HEX);
}
}
return true;
}
return false;
}