-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
75 lines (51 loc) · 1.65 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import streamlit as st
import pickle
import numpy as np
import math
# import model
pipe = pickle.load(open('pipe.pkl','rb'))
df = pickle.load(open('df.pkl','rb'))
st.title("Laptop Price Prdictor")
# brand
company = st.selectbox('Brand',df['Company'].unique())
# type of laptop
type = st.selectbox('Type',df['TypeName'].unique())
# ram
ram = st.selectbox('Ram(in GB)',[2,4,6,8,16,12,24,32,64,])
# weight
weight = st.number_input('Weight of the laptop')
# touchscreen
touchscreen = st.selectbox('Touchscreen',['No','Yes'])
# IPS display
ips = st.selectbox('IPS',['No','Yes'])
# screensize]
screen_size = st.number_input('Screen Size')
#resolution
resolution = st.selectbox('Screen Resolution',['1920x1080','1366x768','1600x900','3840x2160','3200x1800','2880x1800','2560x1600','2560x1440','2304x1440'])
#cpu
cpu = st.selectbox('CPU',df['Cpu Brand'].unique())
# hdd
hdd = st.selectbox('HDD(in GB)',[0,128,256,512,1024,2048])
# ssd
ssd = st.selectbox('SSD(in GB)',[0,8,128,256,512,1024])
#gpu
gpu = st.selectbox('GPU',df['Gpu Brand'].unique())
#os
os = st.selectbox('OS',df['OS'].unique())
if st.button('Predict Price'):
ppi = None
if touchscreen == 'Yes':
touchscreen=1
else:
touchscreen=0
if ips=='Yes':
ips =1
else:
ips=0
X_res = int(resolution.split('x')[0])
Y_res = int(resolution.split('x')[1])
ppi = ((X_res**2)+ (Y_res**2))**0.5/screen_size
# create input point query
query = np.array([company,type,ram,weight,touchscreen,ips,ppi,cpu,hdd,ssd,gpu,os])
query = query.reshape(1,12)
st.title("The predicted price of this configuration is " + str(int(np.exp(pipe.predict(query)[0]))))