""" pathtools.py provides functions handling IP hops, IXP detection and ASN information. """ import dbtools as db import os import copy import logging # load database from the local folder cur_path = os.path.abspath(os.path.dirname(__file__)) as_rel = db.AsRelationDB(os.path.join(cur_path, "db/20161201.as-rel2.txt")) ip2asn = db.AsnDB(main=os.path.join(cur_path, "db/ipasn.dat"), reserved=os.path.join(cur_path, "db/reserved_ip.txt")) ixp_pref = db.IxpPrefixDB(os.path.join(cur_path, "db/ixp_prefixes.txt")) ixp_member = db.IxpMemberDB(os.path.join(cur_path, "db/ixp_membership.txt")) def get_ip_info(ip): """Query the ASN and IXP information for a given IP address from various data source Args: ip (string): ip address, e.g. '129.250.66.33' Returns: addr (db.Addr): Addr object, with addr_type attribute set """ # first check if it is IXP interconnection addr = ixp_member.lookup_interco(ip) if addr is None: # then check if it belongs to a certian IXP prefix ixp = ixp_pref.lookup(ip) if ixp is not None: addr = db.Addr(addr=ip, addr_type=db.AddrType.IxpPref, ixp=ixp) else: # finally check if can be found from ip2asn db asn = ip2asn.lookup(ip) if type(asn) is int: # if int then returns ASN addr = db.Addr(addr=ip, addr_type=db.AddrType.Normal, asn=asn) else: # other type either string for reserved IP blocks or none for not found addr = db.Addr(addr=ip, addr_type=db.AddrType.Others, desc=asn) return addr def bridge(path): """given a sequence of IP hops, identify sub-sequences without ASN, and remove only those IPs other than IXP IPs if the the ASes wrapping the sub-sequence have known relation ship Args: path (list of dbtools.Addr): a path composed of IP hops; sub-sequence without ASN can be composed of IP hops of dbtools.AddrType.IxpPref or dbtools.AddrType.Others. Return: list of dbtools.Addr """ remove_flag = [False] * len(path) # hop flag to one meant to be removed asn_path = [hop.asn for hop in path] holes = find_holes(asn_path) # indexes of None (ASN) sub-sequences last_idx = len(path) - 1 for start, end in holes: # only check the sub-sequences having type dbtools.AddrType.Others hops if start > 0 and end < last_idx and db.AddrType.Others in [hop.type for hop in path[start:end+1]]: # if there is known relation between the two ASes wrapping the None sub-sequence left_asn = path[start-1].asn right_asn = path[end+1].asn if left_asn == right_asn or as_rel.has_relation((left_asn, right_asn)) is not None: # remove only the hop of type dbtools.AddrType.Others for idx in range(start, end+1): if path[idx].type == db.AddrType.Others: remove_flag[idx] = True return [path[idx] for idx in range(last_idx+1) if not remove_flag[idx]] def find_holes(x): """find the beginning and end of continuous None in the given iterator Args: x (iterator): the input sequence Returns: list of (int, int) indicating the beginning and the end of a continuous None sub-sequence """ holes = [] in_hole = False for idx, val in enumerate(x): if not in_hole: if val is None: start = idx in_hole = True else: if val is not None: end = idx - 1 in_hole = False holes.append((start, end)) # in case the iteration ends while still in hole # test_case = [None, 1, 1, None, 1, None, None, None, 1, None] if in_hole: holes.append((start, idx)) return holes def insert_ixp(path): """insert IXP hops according to the presence of IXP address and IXP memebership of surrounding AS Args: path (list of db.Addr): a list of hops Returns: list of db.Addr """ path_len = len(path) ixp_insertion = [] for idx, hop in enumerate(path): if (hop.type == db.AddrType.InterCo or hop.type == db.AddrType.IxpPref) and (0 < idx < path_len-1): # Normal - Interco/IxpPref - Normal if path[idx-1].type == db.AddrType.Normal and path[idx+1].type == db.AddrType.Normal: left_hop = path[idx-1] right_hop = path[idx+1] # Normal - Interco - Normal if hop.type == db.AddrType.InterCo: # ASN: A - A - A -> A - A - A if left_hop.get_asn() == hop.get_asn() == right_hop.get_asn(): pass # ASN: A - A - B -> A - A - IXP - B elif left_hop.get_asn() == hop.get_asn() != right_hop.get_asn(): ixp_insertion.append((idx+1, hop.ixp)) # ASN: A - B - B -> A - IXP - B - B elif left_hop.get_asn() != hop.get_asn() == right_hop.get_asn(): ixp_insertion.append((idx, hop.ixp)) # ASN: A - B - C elif left_hop.get_asn() != hop.get_asn() != right_hop.get_asn(): # check IXP member ship left_is_member = ixp_member.is_member(ixp=hop.ixp, asn=left_hop.asn) right_is_member = ixp_member.is_member(ixp=hop.ixp, asn=right_hop.asn) # IXP membership: A -m- B -m- C -> A - IXP - B - IXP - C if left_is_member and right_is_member: ixp_insertion.append((idx, hop.ixp)) ixp_insertion.append((idx+1, hop.ixp)) # IXP membership: A -m- B - C -> A - IXP - B - C elif left_is_member: ixp_insertion.append((idx, hop.ixp)) # IXP membership: A - B -m- C -> A - B - IXP - C elif right_is_member: ixp_insertion.append((idx + 1, hop.ixp)) else: pass # in this case no IXP hop will be seen in the path # Normal - IxpPref - Normal elif hop.type == db.AddrType.IxpPref: left_is_member = ixp_member.is_member(ixp=hop.ixp, asn=left_hop.asn) right_is_member = ixp_member.is_member(ixp=hop.ixp, asn=right_hop.asn) # IXP membership: A -m- IxpPref -m- B -> A - IXP - IxpPref - IXP - B if left_is_member and right_is_member: ixp_insertion.append((idx, hop.ixp)) ixp_insertion.append((idx + 1, hop.ixp)) # IXP membership: A -m- IxpPref- B -> A - IXP - IxpPref - B elif left_is_member: ixp_insertion.append((idx, hop.ixp)) # IXP membership: A - IxpPref -m- B -> A - IxpPref- IXP - B elif right_is_member: ixp_insertion.append((idx + 1, hop.ixp)) else: pass # in this case no IXP shop shall be seen in the path # Interco/IxpPref - Inter/IxpPref elif path[idx+1].type == db.AddrType.InterCo or path[idx+1].type == db.AddrType.IxpPref: # belong to same IXP if path[idx].ixp == path[idx+1].ixp: ixp_insertion.append((idx + 1, hop.ixp)) else: ixp_insertion.append((idx, hop.ixp)) ixp_insertion.append((idx+1, path[idx+1].ixp)) shift = 0 for ins in ixp_insertion: path.insert(ins[0]+shift, db.Addr(addr=None, addr_type=db.AddrType.Virtual, ixp=ins[1])) shift += 1 return path def remove_repeated_asn(path): """ remove repeated ASN in the give path Args: path (list of ASN): ASN can be int for str if IXP hop Returns: list of ASN """ removed = [] for idx, hop in enumerate(path): if idx == 0: removed.append(hop) elif hop != path[idx-1]: removed.append(hop) return removed def as_path_change(paths): """ mark the idx at which AS path changes Args: paths (list of list of ASN): [[ASN,...],...] Returns: list of int, index of change is set to 1, otherwise 0 """ change = [0] * len(paths) for idx, path in enumerate(paths): if idx > 0: if path != paths[idx-1]: change[idx] = 1 return change def as_path_change_cl(paths): """" mark the idx at which there is surely an AS path change not related to timeout, private address etc. Args: paths (list of list of ASN): [[ASN,...],...] Returns: list of int, index of change is set to 1, otherwise 0 """ change = [0] * len(paths) for idx, path in enumerate(paths): if idx > 0: if len(path) > 0 and len(paths[idx-1]) > 0: if path[-1] == paths[idx-1][-1] and path != paths[idx-1]: # exclude reachability issue diff_as = set(path) ^ set(paths[idx-1]) if len(diff_as) > 0 and all([type(i) is int for i in diff_as]): # all difference is a valid ASN change[idx] = 1 return change def as_path_change_cs(paths): """ mark the idx at which where AS path change happens AS path change is where the FIRST different AS hops are both valid public ASN hop avoid changes due to timeout, private address, reachability issues Args: paths (list of list of ASN): [[ASN,...],...] Returns: list of int, index of change is set to 1, otherwise 0 """ change = [0] * len(paths) for idx, path in enumerate(paths): if idx > 0: if len(path) > 0 and len(paths[idx-1]) > 0: for hop_pair in zip(path, paths[idx-1]): if hop_pair[0] != hop_pair[1]: if type(hop_pair[0]) is int and type(hop_pair[1]) is int: change[idx] = 1 break return change def is_ixp_asn_hop(x): """ check the whether return value of db.Addr.get_asn() is an IXP or not if the type(x) is str and the string is not Invalid IP or reserved IP, than it must be an IXP name Args: x (int, string, None) Returns: bool """ return type(x) is str and not is_bad_hop(x) def is_bad_hop(x): """ check the whether return value of db.Addr.get_asn() is an description string of reserved IP blocks or invalid IP address Args: x (int, string, None) Returns: bool """ return x == 'Invalid IP address' or ip2asn.reserved_des is None or x in ip2asn.reserved_des def as_path_change_ixp(paths): """" mark the idx at which there is surely an AS path change related to IXP. Args: paths (list of list of ASN): [[ASN,...],...] Returns: list of int, index of change is set to 1, otherwise 0 """ change = [0] * len(paths) for idx, path in enumerate(paths): if idx > 0: if len(path) > 0 and len(paths[idx-1]) > 0: if path[-1] == paths[idx-1][-1] and path != paths[idx-1]: # exclude reachability issue diff_as = set(path) ^ set(paths[idx-1]) if len(diff_as) > 0 and \ any([is_ixp_asn_hop(i) for i in diff_as]): change[idx] = 1 return change def as_path_change_ixp_cs(paths): """ mark the idx at which where path change is an IXP change IXP change is where the FIRST different AS hops involve at least one IXP if the previous AS hop differs already, it is not longer an IXP change Args: paths (list of list of ASN): [[ASN,...],...] Returns: list of int, index of change is set to 1, otherwise 0 """ change = [0] * len(paths) for idx, path in enumerate(paths): if idx > 0: if len(path) > 0 and len(paths[idx-1]) > 0: for hop_pair in zip(path, paths[idx-1]): if hop_pair[0] != hop_pair[1]: if all([not is_bad_hop(i) for i in hop_pair]) and any([type(i) is str for i in hop_pair]): change[idx] = 1 break return change def as_path_change_ixp_pu(paths): """ mark the idx at which where path change is an pure IXP change pure IXP change is where the FIRST different AS hops involve IXP in both AS paths if the previous AS hop differs already, it is not longer a pure IXP change Args: paths (list of list of ASN): [[ASN,...],...] Returns: list of int, index of change is set to 1, otherwise 0 """ change = [0] * len(paths) for idx, path in enumerate(paths): if idx > 0: if len(path) > 0 and len(paths[idx-1]) > 0: for hop_pair in zip(path, paths[idx-1]): if hop_pair[0] != hop_pair[1]: if all([is_ixp_asn_hop(i) for i in hop_pair]): change[idx] = 1 break return change class IpForwardingPattern: """IpForwardingPattern describes the forwarding paths for all the paris-id in joining one destination Attributes: pattern (list of path): index of the list is the paris id; the element is a path composed of hops; each path is a list of hop; two paths are equal if they contain the same hops following same order """ def __init__(self, size, paris_id=None, paths=None): """Initialize with size that the number of different paris id and optionally with paths taken by paris id Args: size (int): number of different paris id, in the case of RIPE Atlas, it is 16 paris_id (list of int): sequence of paris id paths (list of path): path taken when the corresponding paris id in the paris_id list is used """ self.pattern = [None] * size if paris_id is not None and paths is not None: # NOTE: if a paris_id have different paths is not checked here assert len(paris_id) == len(paths) for pid, path in zip(paris_id, paths): self.pattern[pid] = path def update(self, paris_id, path): """update/complete the current pattern with new paris id and path taken Return True if the input can be integrated into the existing pattern; False otherwise Args: paris_id (int): one single paris id path (a path): a path taken by the paris id Returns: boolean """ assert paris_id < len(self.pattern) # if the paris id has not yet path set, the input can always be integrated into existing pattern if self.pattern[paris_id] is None: self.pattern[paris_id] = path return True elif self.pattern[paris_id] == path: return True else: return False def is_complete(self): """test if the pattern has path set for each paris id""" return None not in self.pattern def is_match(self, paris_id, paths): """test if the input paris ids and paths are compatible with existing pattern the difference with self.update() is that, is_match won't modify self.pattern is a paris id is not yet set Args: paris_id (list of int) paths (list of path) Returns: boolean """ for pid, path in zip(paris_id, paths): if self.pattern[pid] is not None and path is not None and self.pattern[pid] != path: return False return True def is_match_pattern(self, pattern): """test if the input IpForwarding pattern is compatible with existing pattern a variation of self.is_match() Returns: boolean """ if len(pattern.pattern) != len(self.pattern): return False else: return self.is_match(range(len(pattern.pattern)), pattern.pattern) def __repr__(self): return "IpForwardingPattern(%r)" % dict(enumerate(self.pattern)) def __str__(self): return "%s" % dict(enumerate(self.pattern)) def __hash__(self): return hash(self.__repr__()) def __eq__(self, other): return self.__repr__() == other.__repr__() class PatternSegment: """PatternsSegment describes a subsequence of paths following a same IpFowardingPattern Attributes: begin (int): the beginning index of the path segment; only meaningful when you know the sequence of paris_id and paths; the same for end end (int): the index if last path of the segment, thus inclusive pattern (IpForwardingPattern): the pattern followed by this segment """ def __init__(self, begin, end, pattern): self.begin = begin self.end = end self.pattern = pattern def get_len(self): """return the length of the segment""" return self.end - self.begin + 1 def __repr__(self): return "PatternSegment(begin=%r, end=%r, pattern=%r)" % (self.begin, self.end, self.pattern) def __str__(self): return "(%r, %r, pattern=%s)" % (self.begin, self.end, self.pattern) def __hash__(self): return hash(self.__repr__()) def __eq__(self, other): return self.__repr__() == other.__repr__() def ip_path_change_simple(paris_id, paths, size=16): """given a sequence paris_id and path, detect when a different path is take for a same paris id the functions cuts the given paths sequence into segments where each following a same IpForwardingPattern Args: paris_id (list of int): Paris ID used when tracerouting paths (list of path): path is composed of ip hops size (int): number of different paris_ids Returns: list of PatternSegment """ assert (len(paris_id) == len(paths)) seg = [] cur_seg = PatternSegment(begin=0, end=0, pattern=IpForwardingPattern(size)) for idx, (pid, path) in enumerate(zip(paris_id, paths)): if cur_seg.pattern.update(pid, path): cur_seg.end = idx else: # once a paris id and the path take is not longer compatible with the current segment # start a new segment seg.append(cur_seg) cur_seg = PatternSegment(begin=idx, end=idx, pattern=IpForwardingPattern(size)) cur_seg.pattern.update(pid, path) # store the last segment if cur_seg not in seg: seg.append(cur_seg) return seg def ip_path_change_bck_ext(paris_id, paths, size=16): """ maximize longest path segment with backward extension after the ip_path_change_simple() extends segment in -> direction; this function further checks if the longer segment of the two neighbouring ones can be further extended in <- direction the intuition behind is that most time measurement flows on dominant patterns Args: paris_id (list of int): Paris ID used when tracerouting paths (list of path): path is composed of ip hops size (int): number of different paris_ids Returns: list of PatternSegment """ seg = ip_path_change_simple(paris_id, paths, size) # simple segmentation for idx, s in enumerate(seg[:-1]): next_s = seg[idx + 1] # | cur seg |<- next seg | extend later # | cur seg ->| next seg | is already done with simple segmentation # next segment can only be backwardly extended if: # it's pattern is complete # it's pattern has been repeated twice so that we are sure that it is a stable pattern # it is longer than the previous pattern so that we maximizes the longest pattern if next_s.pattern.is_complete() and next_s.get_len() >= 2 * size and next_s.get_len() > s.get_len(): next_s_cp = copy.deepcopy(next_s) cur_s_cp = copy.deepcopy(s) pos = cur_s_cp.end while True: # test if can be backwardly extended if next_s.pattern.update(paris_id[pos], paths[pos]): cur_s_cp.end = pos - 1 cur_s_cp.pattern = IpForwardingPattern(size, paris_id[cur_s_cp.begin:cur_s_cp.end+1], paths[cur_s_cp.begin:cur_s_cp.end+1]) next_s_cp.begin = pos pos -= 1 else: break # if extended, change the both segments if cur_s_cp != s: seg[idx] = cur_s_cp seg[idx+1] = next_s_cp return seg def ip_path_change_split(paris_id, paths, size): """pattern change detection with finer granilarity for segments with short length, < 2 * size, chances are that there is a short deviation inside while backward extension might find the end of the short deviation but not necessary the beginning, thus the need for further finer split. the intuition is that if a short segment have a sub-segment at 2 in length that matches with same popular patterns we further split the short segment Args: paris_id (list of int): Paris ID used when tracerouting paths (list of path): path is composed of ip hops size (int): number of different paris_ids Returns: list of PatternSegment """ seg = ip_path_change_bck_ext(paris_id, paths, size) # find relatively popular IpForwarding pattern: any patter that ever lasts more than 2 paris id iteration # not different segment can have same pattern at different places in the path sequences long_pat = set([s.pattern for s in seg if s.get_len() > 2*size and s.pattern.is_complete()]) # {idx:(position, length)} # idx: the idx of seg to be split # position and length of the longest sub-segment that matches popular patterns split = dict() # new segmentation after split split_seg = [] # try to further split short segments by finding the longest sub-segment that matches with popular patterns for idx, s in enumerate(seg): # the segment should at least 3 in length and it's pattern has not been repeated # and it's pattern doesn't match with any of the popular ones if 2 < s.get_len() < 2 * size: # logging.debug("Split short seg %d th: %r" % (idx, s)) any_match = False for lp in long_pat: if lp.is_match_pattern(s.pattern): any_match = True # logging.debug("\tShort seg match with popular pattern %r, thus skipped" % (lp)) if not any_match: max_len_per_pos = [] # iterate over all the idx from the beginning to one before last of the short segment # and store the longest match with popular patterns for each position for pos in range(s.begin, s.end): # logging.debug("\tInspect pos %d" % pos) l = 2 # starting from match length 2 while pos+l <= s.end+1: # iterate till the end of current segment any_match = False # the number of matched long pattern for lp in long_pat: if lp.is_match(paris_id[pos:pos+l], paths[pos:pos+l]): any_match = True break if any_match: # if pos:pos+l matches at least one long pattern, further extend the length l += 1 else: # record last successful try max_len_per_pos.append((pos, l-1)) break # this is case when the end of sub-segment reaches the end of the short segment if (pos, l-1) not in max_len_per_pos: max_len_per_pos.append((pos, l-1)) # logging.debug("\t\tlongest sub seg %s" % str(max_len_per_pos[-1])) max_len_per_pos = sorted(max_len_per_pos, key=lambda e: e[1], reverse=True) longest_cut = max_len_per_pos[0] if longest_cut[1] > 1: # further split only if the length of the longest match > 1 in length split[idx] = longest_cut # logging.debug("\t cut at %s" % str(longest_cut)) # split the segments for idx, s in enumerate(seg): if idx in split: cut_begin = split[idx][0] cut_end = cut_begin + split[idx][1] - 1 # three possible cases: 1/ at match at beginning; 2/ the match in the middle; 3/ the match at the end if cut_begin == s.begin: split_seg.append(PatternSegment(begin=cut_begin, end=cut_end, pattern=IpForwardingPattern(size, paris_id[cut_begin:cut_end + 1], paths[cut_begin:cut_end + 1]))) split_seg.append(PatternSegment(begin=cut_end + 1, end=s.end, pattern=IpForwardingPattern(size, paris_id[cut_end + 1:s.end + 1], paths[cut_end + 1:s.end + 1]))) elif cut_begin > s.begin and cut_end < s.end: split_seg.append(PatternSegment(begin=s.begin, end=cut_begin - 1, pattern=IpForwardingPattern(size, paris_id[s.begin:cut_begin], paths[s.begin:cut_begin]))) split_seg.append(PatternSegment(begin=cut_begin, end=cut_end, pattern=IpForwardingPattern(size, paris_id[cut_begin:cut_end + 1], paths[cut_begin:cut_end + 1]))) split_seg.append(PatternSegment(begin=cut_end + 1, end=s.end, pattern=IpForwardingPattern(size, paris_id[cut_end + 1:s.end + 1], paths[cut_end + 1:s.end + 1]))) elif cut_end == s.end: split_seg.append(PatternSegment(begin=s.begin, end=cut_begin - 1, pattern=IpForwardingPattern(size, paris_id[s.begin:cut_begin], paths[s.begin:cut_begin]))) split_seg.append(PatternSegment(begin=cut_begin, end=cut_end, pattern=IpForwardingPattern(size, paris_id[cut_begin:cut_end + 1], paths[cut_begin:cut_end + 1]))) else: split_seg.append(s) # after the above split, the new neighbouring segments could again math popular pattern, merge them # {idx: new segment} # idx: the first idx of the two neighbour segment in split_seg that meant to be merged # maps to the new merged segment merge = dict() for idx, s in enumerate(split_seg[:-1]): next_s = split_seg[idx+1] # if the two neighbour segments are short test if them can be merged if s.get_len() < 2 * size or next_s.get_len() < 2 * size: # if the neighbouring seg matches with each other then test if merged seg matches with popular pattern if s.pattern.is_match_pattern(next_s.pattern): merge_pat = IpForwardingPattern(size, paris_id[s.begin:next_s.end+1], paths[s.begin:next_s.end+1]) any_match = False for lp in long_pat: if lp.is_match_pattern(merge_pat): any_match = True break if any_match: merge[idx] = PatternSegment(begin=s.begin, end=next_s.end, pattern=merge_pat) # in general consecutive merge, e.g. 1 merge 2 and 2 merge 3, is not possible # log it when happens for i in merge: if i+1 in merge: logging.error("IP change split: consecutive merge possible: %r, %r" % (paris_id, paths)) return split_seg mg_seg = [] for idx, seg in enumerate(split_seg): if idx in merge: mg_seg.append(merge[idx]) elif idx not in merge and idx-1 not in merge: mg_seg.append(seg) return mg_seg def ifp_change(seg, seq_len): """ mark the idx at which IpForwardingPattern changes, i.e. the beginning of a new segment Args: seg (list of PatternSegment): the out put of ifp change detection algos seq_len: the total length of the path sequence Returns: list of int, index of change is set to 1, otherwise 0 """ change = [0] * seq_len if len(seg) > 1: for s in seg[1:]: change[s.begin] = 1 return change