

Visual Defect Obfuscation based Self-Supervised Anomaly Detection

YeongHyeon Park^{1,2} Sungho Kang¹ Myung Jin Kim² Yeonho Lee¹ Hyeong Seok Kim² Juneho Yi¹ ¹Department of Electrical and Computer Engineering, Sungkyunkwan University ²SK Planet Co., Ltd.

natureresearch

Introduction

Reconstruction-by-inpainting based methods with an effective masking strategy of suspected defective regions enhance the UAD performance but there still remain issues to overcome.

- 1. Time-consuming inference due to multiple masking
- 2. Output inconsistency by random masking
- 3. Inaccurate reconstruction of normal patterns by large masks

This study proposes a novel reconstruction-by-inpainting method, dubbed Excision And Recovery (EAR).

Mosaic scale prediction

Figure 2: Linear regression model between r_{10} and m^* . m^* found by grid search is denoted by blue and red circles for r_{10} , and their correlation coefficients are -0.939 and -0.497 for 10 object subsets and 5 texture subsets,

- Pre-trained attention of DINO-Vit [1] effectively cuts out suspected defective regions and resolves issues 1 and 2
- Hint-providing proves to enhance the performance than emptying those regions by binary masking, thereby overcomes issue 3.

Figure 1: Visual comparison of the results when disabling each design component of EAR: visual obfuscation by mosaicing and saliency masking.

Reconstruction results

Figure 4: Visual comparison of RIAD [2] and EAR.

Visual Defect Obfuscation

Figure 3: An overview of EAR. EAR takes the reconstruction-by-inpainting approach and is characterized by single deterministic masking and visual obfuscation of masked regions for hint-providing.

Results for industrial dataset

Table 1: Summary of the AUROC for the MVTec AD dataset [3]. For EAR, AUROCs are shown for two cases of \hat{m} and m^* , in \hat{m} (m^*) form. Abbreviations of attention module, discriminator, and memory module are 'Att', 'Dis', and 'Mem' respectively.

Model	MS-CAM	GANomaly	SCADN	MemAE	U-Net	DAAD	RIAD [2]	EAR (proposed)
Backbone	AE	AE	AE	AE	U-Net	U-Net	U-Net	U-Net
Additional Module	Att	Dis	Dis	Mem	-	Dis & Mem	-	-
Bottle	0.940	0.892	0,957	0.930	0.863	0,976	0.999	0.997 (0.997)
Cable	0.880	0.732	0.856	0.785	0.636	0.844	0.819	0.853 (0.871)
Capsule	0.850	0.708	0.765	0.735	0.673	0.767	0.884	0.870 (0.870)
Carpet	0.910	0.842	0.504	0.386	0.774	0.866	0.842	0.850 (0.899)
Grid	0.940	0.743	0.983	0.805	0.857	0.957	0.996	0.952 (0.959)
Hazelnut	0.950	0.794	0.833	0.769	0.996	0.921	0.833	0.997 (0.997)
Leather	0.950	0.792	0.659	0.423	0.870	0.862	1.000	1.000 (1.000)
Metal nut	0.690	0.745	0.624	0.654	0.676	0.758	0.885	0.856 (0.876)
Pill	0.890	0.757	0.814	0.717	0.781	0.900	0.838	0.922 (0.922)
Screw	1.000	0.699	0.831	0.257	1.000	0.987	0.845	0.779 (0.886)
Tile	0.800	0.785	0.792	0.718	0.964	0.882	0.987	0.918 (0.965)
Toothbrush	1.000	0.700	0.891	0.967	0.811	0.992	1.000	1.000 (1.000)
Transistor	0.880	0.746	0.863	0.791	0.674	0.876	0.909	0.947 (0.947)
Wood	0.940	0.653	0.968	0.954	0.958	0.982	0.930	0.946 (0.985)
Zipper	0.910	0.834	0.846	0.710	0.750	0.859	0.981	0.949 (0.955)
Average	0.902	0.761	0.812	0.707	0.819	0.895	0.917	0.922 (0.942)

This study proposes a strategy to maximize the UAD performance without changing the NN structure.

Thus, the performance is compared with recent studies that use NNs of the same or similar scale.

Computational efficiency

 Table 2: Processing time for each training and inference.

Model	Training (sec)	Inference (msec)
RIAD [2]	35,478	366
EAR _{w/o obf}	3,084	156
EAR _{w/o attn}	3,078	37
EAR	3,109	197

Ablation study									
Table 3: Summary of the ablation study.									
Model	RIAD [2]	Ablations			EAR (proposed)				
Masking	√(multi)	 ✓ 		\checkmark	 ✓ 				
Hint			\checkmark	\checkmark	✓				
KD				\checkmark					
Bottle	0.999	0.995	1.000	0.994 (0.995)	0.997 (0.997)				
Cable	0.819	0.795	0.888	0.851 (0.855)	0.853 (0.871)				
Capsule	0.884	0.784	0.918	0.869 (0.869)	0.870 (0.870)				
Carpet	0.842	0.848	0.718	0.846 (0.880)	0.850 (0.899)				
Grid	0.996	0.969	0.963	0.976 (0.976)	0.952 (0.959)				
Hazelnut	0.833	0.986	0.996	0.992 (0.996)	0.997 (0.997)				
Leather	1.000	1.000	1.000	1.000 (1.000)	1.000 (1.000)				
Metal nut	0.885	0.832	0.841	0.868 (0.868)	0.856 (0.876)				
Pill	0.838	0.738	0.867	0.870 (0.873)	0.922 (0.922)				
Screw	0.845	0.800	0.825	0.776 (0.854)	0.779 (0.886)				
Tile	0.987	0.928	0.939	0.956 (0.956)	0.918 (0.965)				
Toothbrush	1.000	0.994	1.000	1.000 (1.000)	1.000 (1.000)				
Transistor	0.909	0.891	0.943	0.895 (0.933)	0.947 (0.947)				
Wood	0.930	0.904	0.945	0.986 (0.995)	0.946 (0.985)				
Zipper	0.981	0.900	0.963	0.951 (0.961)	0.949 (0.955)				
Average	0.917	0.891	0.920	0.922 (0.934)	0.922 (0.942)				

- Best performance in hazelnut, pill, and transistor: The common characteristic of defective samples in these subtasks is surface damage which can be recovered into normal form by EAR.
- Relatively low performance in cases of capsules, screws, and zippers: The detailed pattern alignment of screw thread or the zipper teeth by reconstruction may be slightly missed due to visual defect obfuscation.

Conclusions

- The proposed pre-trained spatial attention-based single deterministic masking method has advanced the state-of-the-art methods in the reconstruction-by-inpainting approach for UAD, securing both higher throughput and output reliability.
- The proposed hint-providing strategy by visual obfuscation on masked regions further enhances the UAD performance with the proposed mosaic scale estimation method.

References

[1] Caron, M., et al. "Emerging properties in self-supervised vision transformers." ICCV 2021

[2] Zavrtanik, V., et al. "Reconstruction by inpainting for visual anomaly detection." Pattern Recognition. 2021

[3] Bergmann, P., et al. "MVTec AD-A comprehensive real-world dataset for unsupervised anomaly detection." CVPR 2019