|
| 1 | +#encoding=utf-8 |
| 2 | + |
| 3 | +import cv2 |
| 4 | +import time |
| 5 | +import math |
| 6 | +import numpy as np |
| 7 | +import pandas as pd |
| 8 | + |
| 9 | + |
| 10 | +from sklearn.cross_validation import train_test_split |
| 11 | +from sklearn.metrics import accuracy_score |
| 12 | + |
| 13 | +total_class = 10 |
| 14 | + |
| 15 | +# 二值化 |
| 16 | +def binaryzation(img): |
| 17 | + cv_img = img.astype(np.uint8) |
| 18 | + cv2.threshold(cv_img,50,1,cv2.cv.CV_THRESH_BINARY_INV,cv_img) |
| 19 | + return cv_img |
| 20 | + |
| 21 | +def binaryzation_features(trainset): |
| 22 | + features = [] |
| 23 | + |
| 24 | + for img in trainset: |
| 25 | + img = np.reshape(img,(28,28)) |
| 26 | + cv_img = img.astype(np.uint8) |
| 27 | + |
| 28 | + img_b = binaryzation(cv_img) |
| 29 | + # hog_feature = np.transpose(hog_feature) |
| 30 | + features.append(img_b) |
| 31 | + |
| 32 | + features = np.array(features) |
| 33 | + features = np.reshape(features,(-1,784)) |
| 34 | + |
| 35 | + return features |
| 36 | + |
| 37 | + |
| 38 | +class Tree(object): |
| 39 | + def __init__(self,node_type,Class = None, feature = None): |
| 40 | + self.node_type = node_type |
| 41 | + self.dict = {} |
| 42 | + self.Class = Class |
| 43 | + self.feature = feature |
| 44 | + |
| 45 | + def add_tree(self,val,tree): |
| 46 | + self.dict[val] = tree |
| 47 | + |
| 48 | + def predict(self,features): |
| 49 | + if self.node_type == 'leaf': |
| 50 | + return self.Class |
| 51 | + |
| 52 | + print 'in' |
| 53 | + |
| 54 | + tree = self.dict[features[self.feature]] |
| 55 | + return tree.predict(features) |
| 56 | + |
| 57 | +def calc_ent(x): |
| 58 | + """ |
| 59 | + calculate shanno ent of x |
| 60 | + """ |
| 61 | + |
| 62 | + x_value_list = set([x[i] for i in range(x.shape[0])]) |
| 63 | + ent = 0.0 |
| 64 | + for x_value in x_value_list: |
| 65 | + p = float(x[x == x_value].shape[0]) / x.shape[0] |
| 66 | + logp = np.log2(p) |
| 67 | + ent -= p * logp |
| 68 | + |
| 69 | + return ent |
| 70 | + |
| 71 | +def calc_condition_ent(x, y): |
| 72 | + """ |
| 73 | + calculate ent H(y|x) |
| 74 | + """ |
| 75 | + |
| 76 | + # calc ent(y|x) |
| 77 | + x_value_list = set([x[i] for i in range(x.shape[0])]) |
| 78 | + ent = 0.0 |
| 79 | + for x_value in x_value_list: |
| 80 | + sub_y = y[x == x_value] |
| 81 | + temp_ent = calc_ent(sub_y) |
| 82 | + ent += (float(sub_y.shape[0]) / y.shape[0]) * temp_ent |
| 83 | + |
| 84 | + return ent |
| 85 | + |
| 86 | +def calc_ent_grap(x,y): |
| 87 | + """ |
| 88 | + calculate ent grap |
| 89 | + """ |
| 90 | + |
| 91 | + base_ent = calc_ent(y) |
| 92 | + condition_ent = calc_condition_ent(x, y) |
| 93 | + ent_grap = base_ent - condition_ent |
| 94 | + |
| 95 | + return ent_grap |
| 96 | + |
| 97 | +def train(train_set,train_label,features,epsilon): |
| 98 | + global total_class |
| 99 | + |
| 100 | + LEAF = 'leaf' |
| 101 | + INTERNAL = 'internal' |
| 102 | + |
| 103 | + |
| 104 | + # 步骤1——如果train_set中的所有实例都属于同一类Ck |
| 105 | + label_dict = [0 for i in xrange(total_class)] |
| 106 | + for label in train_label: |
| 107 | + label_dict[label] += 1 |
| 108 | + |
| 109 | + for label, label_count in enumerate(label_dict): |
| 110 | + if label_count == len(train_label): |
| 111 | + tree = Tree(LEAF,Class = label) |
| 112 | + return tree |
| 113 | + |
| 114 | + # 步骤2——如果features为空 |
| 115 | + max_len,max_class = 0,0 |
| 116 | + for i in xrange(total_class): |
| 117 | + class_i = filter(lambda x:x==i,train_label) |
| 118 | + if len(class_i) > max_len: |
| 119 | + max_class = i |
| 120 | + max_len = len(class_i) |
| 121 | + |
| 122 | + if len(features) == 0: |
| 123 | + tree = Tree(LEAF,Class = max_class) |
| 124 | + return tree |
| 125 | + |
| 126 | + # 步骤3——计算信息增益 |
| 127 | + max_feature = 0 |
| 128 | + max_gda = 0 |
| 129 | + |
| 130 | + D = train_label |
| 131 | + HD = calc_ent(D) |
| 132 | + for feature in features: |
| 133 | + A = np.array(train_set[:,feature].flat) |
| 134 | + gda = HD - calc_condition_ent(A,D) |
| 135 | + |
| 136 | + if gda > max_gda: |
| 137 | + max_gda,max_feature = gda,feature |
| 138 | + |
| 139 | + # 步骤4——小于阈值 |
| 140 | + if max_gda < epsilon: |
| 141 | + tree = Tree(LEAF,Class = max_class) |
| 142 | + return tree |
| 143 | + |
| 144 | + # 步骤5——构建非空子集 |
| 145 | + sub_features = filter(lambda x:x!=max_feature,features) |
| 146 | + tree = Tree(INTERNAL,feature=max_feature) |
| 147 | + |
| 148 | + feature_col = np.array(train_set[:,max_feature].flat) |
| 149 | + feature_value_list = set([feature_col[i] for i in range(feature_col.shape[0])]) |
| 150 | + for feature_value in feature_value_list: |
| 151 | + |
| 152 | + index = [] |
| 153 | + for i in xrange(len(train_label)): |
| 154 | + if train_set[i][max_feature] == feature_value: |
| 155 | + index.append(i) |
| 156 | + |
| 157 | + sub_train_set = train_set[index] |
| 158 | + sub_train_label = train_label[index] |
| 159 | + |
| 160 | + sub_tree = train(sub_train_set,sub_train_label,sub_features,epsilon) |
| 161 | + tree.add_tree(feature_value,sub_tree) |
| 162 | + |
| 163 | + return tree |
| 164 | + |
| 165 | +def predict(test_set,tree): |
| 166 | + |
| 167 | + result = [] |
| 168 | + for features in test_set: |
| 169 | + tmp_predict = tree.predict(features) |
| 170 | + result.append(tmp_predict) |
| 171 | + return np.array(result) |
| 172 | + |
| 173 | + |
| 174 | + |
| 175 | +if __name__ == '__main__': |
| 176 | + # classes = [0,0,1,1,0,0,0,1,1,1,1,1,1,1,0] |
| 177 | + # |
| 178 | + # age = [0,0,0,0,0,1,1,1,1,1,2,2,2,2,2] |
| 179 | + # occupation = [0,0,1,1,0,0,0,1,0,0,0,0,1,1,0] |
| 180 | + # house = [0,0,0,1,0,0,0,1,1,1,1,1,0,0,0] |
| 181 | + # loan = [0,1,1,0,0,0,1,1,2,2,2,1,1,2,0] |
| 182 | + # |
| 183 | + # features = [] |
| 184 | + # |
| 185 | + # for i in range(15): |
| 186 | + # feature = [age[i],occupation[i],house[i],loan[i]] |
| 187 | + # features.append(feature) |
| 188 | + # |
| 189 | + # trainset = np.array(features) |
| 190 | + # |
| 191 | + # tree = train(trainset,np.array(classes),[0,1,2,3],0.1) |
| 192 | + # |
| 193 | + # print type(tree) |
| 194 | + # features = [0,0,0,1] |
| 195 | + # print tree.predict(np.array(features)) |
| 196 | + |
| 197 | + |
| 198 | + print 'Start read data' |
| 199 | + |
| 200 | + time_1 = time.time() |
| 201 | + |
| 202 | + raw_data = pd.read_csv('../data/train.csv',header=0) |
| 203 | + data = raw_data.values |
| 204 | + |
| 205 | + imgs = data[0::,1::] |
| 206 | + labels = data[::,0] |
| 207 | + |
| 208 | + features = binaryzation_features(imgs) |
| 209 | + |
| 210 | + # 选取 2/3 数据作为训练集, 1/3 数据作为测试集 |
| 211 | + train_features, test_features, train_labels, test_labels = train_test_split(features, labels, test_size=0.33, random_state=23323) |
| 212 | + # print train_features.shape |
| 213 | + # print train_features.shape |
| 214 | + |
| 215 | + time_2 = time.time() |
| 216 | + print 'read data cost ',time_2 - time_1,' second','\n' |
| 217 | + |
| 218 | + print 'Start training' |
| 219 | + tree = train(train_features,train_labels,[i for i in range(784)],0.2) |
| 220 | + print type(tree) |
| 221 | + print 'knn do not need to train' |
| 222 | + time_3 = time.time() |
| 223 | + print 'training cost ',time_3 - time_2,' second','\n' |
| 224 | + |
| 225 | + print 'Start predicting' |
| 226 | + test_predict = predict(test_features,tree) |
| 227 | + time_4 = time.time() |
| 228 | + print 'predicting cost ',time_4 - time_3,' second','\n' |
| 229 | + |
| 230 | + score = accuracy_score(test_labels,test_predict) |
| 231 | + print "The accruacy socre is ", score |
| 232 | + |
| 233 | + |
| 234 | + |
| 235 | + |
| 236 | + |
| 237 | + |
| 238 | + |
| 239 | + |
| 240 | + |
| 241 | + |
| 242 | + |
0 commit comments