|
| 1 | +package com.thealgorithms.datastructures.lists; |
| 2 | + |
| 3 | +import java.util.*; |
| 4 | +import java.util.stream.Collectors; |
| 5 | +import java.util.stream.IntStream; |
| 6 | + |
| 7 | +/** |
| 8 | + * Skip list is a data structure that allows {@code O(log n)} search complexity |
| 9 | + * as well as {@code O(log n)} insertion complexity within an ordered sequence |
| 10 | + * of {@code n} elements. Thus it can get the best features of a sorted array |
| 11 | + * (for searching) while maintaining a linked list-like structure that allows |
| 12 | + * insertion, which is not possible with a static array. |
| 13 | + * <p> |
| 14 | + * A skip list is built in layers. The bottom layer is an ordinary ordered |
| 15 | + * linked list. Each higher layer acts as an "express lane" for the lists |
| 16 | + * below. |
| 17 | + * <pre> |
| 18 | + * [ ] ------> [ ] --> [ ] |
| 19 | + * [ ] --> [ ] [ ] --> [ ] |
| 20 | + * [ ] [ ] [ ] [ ] [ ] [ ] |
| 21 | + * H 0 1 2 3 4 |
| 22 | + * </pre> |
| 23 | + * |
| 24 | + * @param <E> type of elements |
| 25 | + * @see <a href="https://en.wikipedia.org/wiki/Skip_list">Wiki. Skip list</a> |
| 26 | + */ |
| 27 | +public class SkipList<E extends Comparable<E>> { |
| 28 | + |
| 29 | + /** |
| 30 | + * Node before first node. |
| 31 | + */ |
| 32 | + private final Node<E> head; |
| 33 | + |
| 34 | + /** |
| 35 | + * Maximum layers count. |
| 36 | + * Calculated by {@link #heightStrategy}. |
| 37 | + */ |
| 38 | + private final int height; |
| 39 | + |
| 40 | + /** |
| 41 | + * Function for determining height of new nodes. |
| 42 | + * @see HeightStrategy |
| 43 | + */ |
| 44 | + private final HeightStrategy heightStrategy; |
| 45 | + |
| 46 | + /** |
| 47 | + * Current count of elements in list. |
| 48 | + */ |
| 49 | + private int size; |
| 50 | + |
| 51 | + private static final int DEFAULT_CAPACITY = 100; |
| 52 | + |
| 53 | + public SkipList() { |
| 54 | + this(DEFAULT_CAPACITY, new BernoulliHeightStrategy()); |
| 55 | + } |
| 56 | + |
| 57 | + public SkipList(int expectedCapacity, HeightStrategy heightStrategy) { |
| 58 | + this.heightStrategy = heightStrategy; |
| 59 | + this.height = heightStrategy.height(expectedCapacity); |
| 60 | + this.head = new Node<>(null, this.height); |
| 61 | + this.size = 0; |
| 62 | + } |
| 63 | + |
| 64 | + public void add(E e) { |
| 65 | + Objects.requireNonNull(e); |
| 66 | + Node<E> current = head; |
| 67 | + int layer = height; |
| 68 | + Node<E>[] toFix = new Node[height + 1]; |
| 69 | + |
| 70 | + while (layer >= 0) { |
| 71 | + Node<E> next = current.next(layer); |
| 72 | + if (next == null || next.getValue().compareTo(e) > 0) { |
| 73 | + toFix[layer] = current; |
| 74 | + layer--; |
| 75 | + } else { |
| 76 | + current = next; |
| 77 | + } |
| 78 | + } |
| 79 | + int nodeHeight = heightStrategy.nodeHeight(height); |
| 80 | + Node<E> node = new Node<>(e, nodeHeight); |
| 81 | + for (int i = 0; i <= nodeHeight; i++) { |
| 82 | + if (toFix[i].next(i) != null) { |
| 83 | + node.setNext(i, toFix[i].next(i)); |
| 84 | + toFix[i].next(i).setPrevious(i, node); |
| 85 | + } |
| 86 | + |
| 87 | + toFix[i].setNext(i, node); |
| 88 | + node.setPrevious(i, toFix[i]); |
| 89 | + } |
| 90 | + size++; |
| 91 | + } |
| 92 | + |
| 93 | + public E get(int index) { |
| 94 | + int counter = -1; // head index |
| 95 | + Node<E> current = head; |
| 96 | + while (counter != index) { |
| 97 | + current = current.next(0); |
| 98 | + counter++; |
| 99 | + } |
| 100 | + return current.value; |
| 101 | + } |
| 102 | + |
| 103 | + public void remove(E e) { |
| 104 | + Objects.requireNonNull(e); |
| 105 | + Node<E> current = head; |
| 106 | + int layer = height; |
| 107 | + |
| 108 | + while (layer >= 0) { |
| 109 | + Node<E> next = current.next(layer); |
| 110 | + if (e.equals(current.getValue())) { |
| 111 | + break; |
| 112 | + } else if (next == null || next.getValue().compareTo(e) > 0) { |
| 113 | + layer--; |
| 114 | + } else { |
| 115 | + current = next; |
| 116 | + } |
| 117 | + } |
| 118 | + for (int i = 0; i <= layer; i++) { |
| 119 | + current.previous(i).setNext(i, current.next(i)); |
| 120 | + current.next(i).setPrevious(i, current.previous(i)); |
| 121 | + } |
| 122 | + size--; |
| 123 | + } |
| 124 | + |
| 125 | + /** |
| 126 | + * A search for a target element begins at the head element in the top |
| 127 | + * list, and proceeds horizontally until the current element is greater |
| 128 | + * than or equal to the target. If the current element is equal to the |
| 129 | + * target, it has been found. If the current element is greater than the |
| 130 | + * target, or the search reaches the end of the linked list, the procedure |
| 131 | + * is repeated after returning to the previous element and dropping down |
| 132 | + * vertically to the next lower list. |
| 133 | + * |
| 134 | + * @param e element whose presence in this list is to be tested |
| 135 | + * @return true if this list contains the specified element |
| 136 | + */ |
| 137 | + public boolean contains(E e) { |
| 138 | + Objects.requireNonNull(e); |
| 139 | + Node<E> current = head; |
| 140 | + int layer = height; |
| 141 | + |
| 142 | + while (layer >= 0) { |
| 143 | + Node<E> next = current.next(layer); |
| 144 | + if (e.equals(current.getValue())) { |
| 145 | + return true; |
| 146 | + } else if (next == null || next.getValue().compareTo(e) > 0) { |
| 147 | + layer--; |
| 148 | + } else { |
| 149 | + current = next; |
| 150 | + } |
| 151 | + } |
| 152 | + return false; |
| 153 | + } |
| 154 | + |
| 155 | + public int size() { |
| 156 | + return size; |
| 157 | + } |
| 158 | + |
| 159 | + /** |
| 160 | + * Print height distribution of the nodes in a manner: |
| 161 | + * <pre> |
| 162 | + * [ ] --- --- [ ] --- [ ] |
| 163 | + * [ ] --- [ ] [ ] --- [ ] |
| 164 | + * [ ] [ ] [ ] [ ] [ ] [ ] |
| 165 | + * H 0 1 2 3 4 |
| 166 | + * </pre> |
| 167 | + * Values of nodes is not presented. |
| 168 | + * |
| 169 | + * @return string representation |
| 170 | + */ |
| 171 | + @Override |
| 172 | + public String toString() { |
| 173 | + List<boolean[]> layers = new ArrayList<>(); |
| 174 | + int sizeWithHeader = size + 1; |
| 175 | + for (int i = 0; i <= height; i++) { |
| 176 | + layers.add(new boolean[sizeWithHeader]); |
| 177 | + } |
| 178 | + |
| 179 | + Node<E> current = head; |
| 180 | + int position = 0; |
| 181 | + while (current != null) { |
| 182 | + for (int i = 0; i <= current.height; i++) { |
| 183 | + layers.get(i)[position] = true; |
| 184 | + } |
| 185 | + current = current.next(0); |
| 186 | + position++; |
| 187 | + } |
| 188 | + |
| 189 | + Collections.reverse(layers); |
| 190 | + String result = layers.stream() |
| 191 | + .map(layer -> { |
| 192 | + StringBuilder acc = new StringBuilder(); |
| 193 | + for (boolean b : layer) { |
| 194 | + if (b) { |
| 195 | + acc.append("[ ]"); |
| 196 | + } else { |
| 197 | + acc.append("---"); |
| 198 | + } |
| 199 | + acc.append(" "); |
| 200 | + } |
| 201 | + return acc.toString(); |
| 202 | + }) |
| 203 | + .collect(Collectors.joining("\n")); |
| 204 | + String positions = IntStream.range(0, sizeWithHeader - 1) |
| 205 | + .mapToObj(i -> String.format("%3d", i)) |
| 206 | + .collect(Collectors.joining(" ")); |
| 207 | + |
| 208 | + return result + String.format("%n H %s%n", positions); |
| 209 | + } |
| 210 | + |
| 211 | + /** |
| 212 | + * Value container. |
| 213 | + * Each node have pointers to the closest nodes left and right from current |
| 214 | + * on each layer of nodes height. |
| 215 | + * @param <E> type of elements |
| 216 | + */ |
| 217 | + private static class Node<E> { |
| 218 | + |
| 219 | + private final E value; |
| 220 | + private final int height; |
| 221 | + private final List<Node<E>> forward; |
| 222 | + private final List<Node<E>> backward; |
| 223 | + |
| 224 | + @SuppressWarnings("unchecked") |
| 225 | + public Node(E value, int height) { |
| 226 | + this.value = value; |
| 227 | + this.height = height; |
| 228 | + |
| 229 | + // predefined size lists with null values in every cell |
| 230 | + this.forward = Arrays.asList(new Node[height + 1]); |
| 231 | + this.backward = Arrays.asList(new Node[height + 1]); |
| 232 | + } |
| 233 | + |
| 234 | + public Node<E> next(int layer) { |
| 235 | + checkLayer(layer); |
| 236 | + return forward.get(layer); |
| 237 | + } |
| 238 | + |
| 239 | + public void setNext(int layer, Node<E> node) { |
| 240 | + forward.set(layer, node); |
| 241 | + } |
| 242 | + |
| 243 | + public void setPrevious(int layer, Node<E> node) { |
| 244 | + backward.set(layer, node); |
| 245 | + } |
| 246 | + |
| 247 | + public Node<E> previous(int layer) { |
| 248 | + checkLayer(layer); |
| 249 | + return backward.get(layer); |
| 250 | + } |
| 251 | + |
| 252 | + public E getValue() { |
| 253 | + return value; |
| 254 | + } |
| 255 | + |
| 256 | + private void checkLayer(int layer) { |
| 257 | + if (layer < 0 || layer > height) { |
| 258 | + throw new IllegalArgumentException(); |
| 259 | + } |
| 260 | + } |
| 261 | + } |
| 262 | + |
| 263 | + /** |
| 264 | + * Height strategy is a way of calculating maximum height for skip list |
| 265 | + * and height for each node. |
| 266 | + * @see BernoulliHeightStrategy |
| 267 | + */ |
| 268 | + public interface HeightStrategy { |
| 269 | + int height(int expectedSize); |
| 270 | + int nodeHeight(int heightCap); |
| 271 | + } |
| 272 | + |
| 273 | + /** |
| 274 | + * In most common skip list realisation element in layer {@code i} appears |
| 275 | + * in layer {@code i+1} with some fixed probability {@code p}. |
| 276 | + * Two commonly used values for {@code p} are 1/2 and 1/4. |
| 277 | + * Probability of appearing element in layer {@code i} could be calculated |
| 278 | + * with <code>P = p<sup>i</sup>(1 - p)</code> |
| 279 | + * <p> |
| 280 | + * Maximum height that would give the best search complexity |
| 281 | + * calculated by <code>log<sub>1/p</sub>n</code> |
| 282 | + * where {@code n} is an expected count of elements in list. |
| 283 | + */ |
| 284 | + public static class BernoulliHeightStrategy implements HeightStrategy { |
| 285 | + |
| 286 | + private final double probability; |
| 287 | + |
| 288 | + private static final double DEFAULT_PROBABILITY = 0.5; |
| 289 | + private static final Random RANDOM = new Random(); |
| 290 | + |
| 291 | + public BernoulliHeightStrategy() { |
| 292 | + this.probability = DEFAULT_PROBABILITY; |
| 293 | + } |
| 294 | + |
| 295 | + public BernoulliHeightStrategy(double probability) { |
| 296 | + if (probability <= 0 || probability >= 1) { |
| 297 | + throw new IllegalArgumentException("Probability should be from 0 to 1. But was: " + probability); |
| 298 | + } |
| 299 | + this.probability = probability; |
| 300 | + } |
| 301 | + |
| 302 | + @Override |
| 303 | + public int height(int expectedSize) { |
| 304 | + long height = Math.round(Math.log10(expectedSize) / Math.log10(1 / probability)); |
| 305 | + if (height > Integer.MAX_VALUE) { |
| 306 | + throw new IllegalArgumentException(); |
| 307 | + } |
| 308 | + return (int) height; |
| 309 | + } |
| 310 | + |
| 311 | + @Override |
| 312 | + public int nodeHeight(int heightCap) { |
| 313 | + int level = 0; |
| 314 | + double border = 100 * (1 - probability); |
| 315 | + while (((RANDOM.nextInt(Integer.MAX_VALUE) % 100) + 1) > border) { |
| 316 | + if (level + 1 >= heightCap) { |
| 317 | + return level; |
| 318 | + } |
| 319 | + level++; |
| 320 | + } |
| 321 | + return level; |
| 322 | + } |
| 323 | + } |
| 324 | +} |
0 commit comments