-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexpr.go
1355 lines (1222 loc) · 39.4 KB
/
expr.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements typechecking of expressions.
package types
import (
"fmt"
"go/ast"
"go/constant"
"go/token"
. "internal/types/errors"
)
/*
Basic algorithm:
Expressions are checked recursively, top down. Expression checker functions
are generally of the form:
func f(x *operand, e *ast.Expr, ...)
where e is the expression to be checked, and x is the result of the check.
The check performed by f may fail in which case x.mode == invalid, and
related error messages will have been issued by f.
If a hint argument is present, it is the composite literal element type
of an outer composite literal; it is used to type-check composite literal
elements that have no explicit type specification in the source
(e.g.: []T{{...}, {...}}, the hint is the type T in this case).
All expressions are checked via rawExpr, which dispatches according
to expression kind. Upon returning, rawExpr is recording the types and
constant values for all expressions that have an untyped type (those types
may change on the way up in the expression tree). Usually these are constants,
but the results of comparisons or non-constant shifts of untyped constants
may also be untyped, but not constant.
Untyped expressions may eventually become fully typed (i.e., not untyped),
typically when the value is assigned to a variable, or is used otherwise.
The updateExprType method is used to record this final type and update
the recorded types: the type-checked expression tree is again traversed down,
and the new type is propagated as needed. Untyped constant expression values
that become fully typed must now be representable by the full type (constant
sub-expression trees are left alone except for their roots). This mechanism
ensures that a client sees the actual (run-time) type an untyped value would
have. It also permits type-checking of lhs shift operands "as if the shift
were not present": when updateExprType visits an untyped lhs shift operand
and assigns it its final type, that type must be an integer type, and a
constant lhs must be representable as an integer.
When an expression gets its final type, either on the way out from rawExpr,
on the way down in updateExprType, or at the end of the type checker run,
the type (and constant value, if any) is recorded via Info.Types, if present.
*/
type opPredicates map[token.Token]func(Type) bool
var unaryOpPredicates opPredicates
func init() {
// Setting unaryOpPredicates in init avoids declaration cycles.
unaryOpPredicates = opPredicates{
token.ADD: allNumeric,
token.SUB: allNumeric,
token.XOR: allInteger,
token.NOT: allBoolean,
}
}
func (check *Checker) op(m opPredicates, x *operand, op token.Token) bool {
if pred := m[op]; pred != nil {
if !pred(x.typ) {
check.errorf(x, UndefinedOp, invalidOp+"operator %s not defined on %s", op, x)
return false
}
} else {
check.errorf(x, InvalidSyntaxTree, "unknown operator %s", op)
return false
}
return true
}
// opPos returns the position of the operator if x is an operation;
// otherwise it returns the start position of x.
func opPos(x ast.Expr) token.Pos {
switch op := x.(type) {
case nil:
return nopos // don't crash
case *ast.BinaryExpr:
return op.OpPos
default:
return x.Pos()
}
}
// opName returns the name of the operation if x is an operation
// that might overflow; otherwise it returns the empty string.
func opName(e ast.Expr) string {
switch e := e.(type) {
case *ast.BinaryExpr:
if int(e.Op) < len(op2str2) {
return op2str2[e.Op]
}
case *ast.UnaryExpr:
if int(e.Op) < len(op2str1) {
return op2str1[e.Op]
}
}
return ""
}
var op2str1 = [...]string{
token.XOR: "bitwise complement",
}
// This is only used for operations that may cause overflow.
var op2str2 = [...]string{
token.ADD: "addition",
token.SUB: "subtraction",
token.XOR: "bitwise XOR",
token.MUL: "multiplication",
token.SHL: "shift",
}
// The unary expression e may be nil. It's passed in for better error messages only.
func (check *Checker) unary(x *operand, e *ast.UnaryExpr) {
check.expr(nil, x, e.X)
if x.mode == invalid {
return
}
op := e.Op
switch op {
case token.AND:
// spec: "As an exception to the addressability
// requirement x may also be a composite literal."
if _, ok := ast.Unparen(e.X).(*ast.CompositeLit); !ok && x.mode != variable {
check.errorf(x, UnaddressableOperand, invalidOp+"cannot take address of %s", x)
x.mode = invalid
return
}
x.mode = value
x.typ = &Pointer{base: x.typ}
return
case token.ARROW:
if elem := check.chanElem(x, x, true); elem != nil {
x.mode = commaok
x.typ = elem
check.hasCallOrRecv = true
return
}
x.mode = invalid
return
case token.TILDE:
// Provide a better error position and message than what check.op below would do.
if !allInteger(x.typ) {
check.error(e, UndefinedOp, "cannot use ~ outside of interface or type constraint")
x.mode = invalid
return
}
check.error(e, UndefinedOp, "cannot use ~ outside of interface or type constraint (use ^ for bitwise complement)")
op = token.XOR
}
if !check.op(unaryOpPredicates, x, op) {
x.mode = invalid
return
}
if x.mode == constant_ {
if x.val.Kind() == constant.Unknown {
// nothing to do (and don't cause an error below in the overflow check)
return
}
var prec uint
if isUnsigned(x.typ) {
prec = uint(check.conf.sizeof(x.typ) * 8)
}
x.val = constant.UnaryOp(op, x.val, prec)
x.expr = e
check.overflow(x, opPos(x.expr))
return
}
x.mode = value
// x.typ remains unchanged
}
// chanElem returns the channel element type of x for a receive from x (recv == true)
// or send to x (recv == false) operation. If the operation is not valid, chanElem
// reports an error and returns nil.
func (check *Checker) chanElem(pos positioner, x *operand, recv bool) Type {
u, err := commonUnder(x.typ, func(t, u Type) *typeError {
if u == nil {
return typeErrorf("no specific channel type")
}
ch, _ := u.(*Chan)
if ch == nil {
return typeErrorf("non-channel %s", t)
}
if recv && ch.dir == SendOnly {
return typeErrorf("send-only channel %s", t)
}
if !recv && ch.dir == RecvOnly {
return typeErrorf("receive-only channel %s", t)
}
return nil
})
if u != nil {
return u.(*Chan).elem
}
cause := err.format(check)
if recv {
if isTypeParam(x.typ) {
check.errorf(pos, InvalidReceive, invalidOp+"cannot receive from %s: %s", x, cause)
} else {
// In this case, only the non-channel and send-only channel error are possible.
check.errorf(pos, InvalidReceive, invalidOp+"cannot receive from %s %s", cause, x)
}
} else {
if isTypeParam(x.typ) {
check.errorf(pos, InvalidSend, invalidOp+"cannot send to %s: %s", x, cause)
} else {
// In this case, only the non-channel and receive-only channel error are possible.
check.errorf(pos, InvalidSend, invalidOp+"cannot send to %s %s", cause, x)
}
}
return nil
}
func isShift(op token.Token) bool {
return op == token.SHL || op == token.SHR
}
func isComparison(op token.Token) bool {
// Note: tokens are not ordered well to make this much easier
switch op {
case token.EQL, token.NEQ, token.LSS, token.LEQ, token.GTR, token.GEQ:
return true
}
return false
}
// updateExprType updates the type of x to typ and invokes itself
// recursively for the operands of x, depending on expression kind.
// If typ is still an untyped and not the final type, updateExprType
// only updates the recorded untyped type for x and possibly its
// operands. Otherwise (i.e., typ is not an untyped type anymore,
// or it is the final type for x), the type and value are recorded.
// Also, if x is a constant, it must be representable as a value of typ,
// and if x is the (formerly untyped) lhs operand of a non-constant
// shift, it must be an integer value.
func (check *Checker) updateExprType(x ast.Expr, typ Type, final bool) {
old, found := check.untyped[x]
if !found {
return // nothing to do
}
// update operands of x if necessary
switch x := x.(type) {
case *ast.BadExpr,
*ast.FuncLit,
*ast.CompositeLit,
*ast.IndexExpr,
*ast.SliceExpr,
*ast.TypeAssertExpr,
*ast.StarExpr,
*ast.KeyValueExpr,
*ast.ArrayType,
*ast.StructType,
*ast.FuncType,
*ast.InterfaceType,
*ast.MapType,
*ast.ChanType:
// These expression are never untyped - nothing to do.
// The respective sub-expressions got their final types
// upon assignment or use.
if debug {
check.dump("%v: found old type(%s): %s (new: %s)", x.Pos(), x, old.typ, typ)
panic("unreachable")
}
return
case *ast.CallExpr:
// Resulting in an untyped constant (e.g., built-in complex).
// The respective calls take care of calling updateExprType
// for the arguments if necessary.
case *ast.Ident, *ast.BasicLit, *ast.SelectorExpr:
// An identifier denoting a constant, a constant literal,
// or a qualified identifier (imported untyped constant).
// No operands to take care of.
case *ast.ParenExpr:
check.updateExprType(x.X, typ, final)
case *ast.UnaryExpr:
// If x is a constant, the operands were constants.
// The operands don't need to be updated since they
// never get "materialized" into a typed value. If
// left in the untyped map, they will be processed
// at the end of the type check.
if old.val != nil {
break
}
check.updateExprType(x.X, typ, final)
case *ast.BinaryExpr:
if old.val != nil {
break // see comment for unary expressions
}
if isComparison(x.Op) {
// The result type is independent of operand types
// and the operand types must have final types.
} else if isShift(x.Op) {
// The result type depends only on lhs operand.
// The rhs type was updated when checking the shift.
check.updateExprType(x.X, typ, final)
} else {
// The operand types match the result type.
check.updateExprType(x.X, typ, final)
check.updateExprType(x.Y, typ, final)
}
default:
panic("unreachable")
}
// If the new type is not final and still untyped, just
// update the recorded type.
if !final && isUntyped(typ) {
old.typ = under(typ).(*Basic)
check.untyped[x] = old
return
}
// Otherwise we have the final (typed or untyped type).
// Remove it from the map of yet untyped expressions.
delete(check.untyped, x)
if old.isLhs {
// If x is the lhs of a shift, its final type must be integer.
// We already know from the shift check that it is representable
// as an integer if it is a constant.
if !allInteger(typ) {
check.errorf(x, InvalidShiftOperand, invalidOp+"shifted operand %s (type %s) must be integer", x, typ)
return
}
// Even if we have an integer, if the value is a constant we
// still must check that it is representable as the specific
// int type requested (was go.dev/issue/22969). Fall through here.
}
if old.val != nil {
// If x is a constant, it must be representable as a value of typ.
c := operand{old.mode, x, old.typ, old.val, 0}
check.convertUntyped(&c, typ)
if c.mode == invalid {
return
}
}
// Everything's fine, record final type and value for x.
check.recordTypeAndValue(x, old.mode, typ, old.val)
}
// updateExprVal updates the value of x to val.
func (check *Checker) updateExprVal(x ast.Expr, val constant.Value) {
if info, ok := check.untyped[x]; ok {
info.val = val
check.untyped[x] = info
}
}
// implicitTypeAndValue returns the implicit type of x when used in a context
// where the target type is expected. If no such implicit conversion is
// possible, it returns a nil Type and non-zero error code.
//
// If x is a constant operand, the returned constant.Value will be the
// representation of x in this context.
func (check *Checker) implicitTypeAndValue(x *operand, target Type) (Type, constant.Value, Code) {
if x.mode == invalid || isTyped(x.typ) || !isValid(target) {
return x.typ, nil, 0
}
// x is untyped
if isUntyped(target) {
// both x and target are untyped
if m := maxType(x.typ, target); m != nil {
return m, nil, 0
}
return nil, nil, InvalidUntypedConversion
}
switch u := under(target).(type) {
case *Basic:
if x.mode == constant_ {
v, code := check.representation(x, u)
if code != 0 {
return nil, nil, code
}
return target, v, code
}
// Non-constant untyped values may appear as the
// result of comparisons (untyped bool), intermediate
// (delayed-checked) rhs operands of shifts, and as
// the value nil.
switch x.typ.(*Basic).kind {
case UntypedBool:
if !isBoolean(target) {
return nil, nil, InvalidUntypedConversion
}
case UntypedInt, UntypedRune, UntypedFloat, UntypedComplex:
if !isNumeric(target) {
return nil, nil, InvalidUntypedConversion
}
case UntypedString:
// Non-constant untyped string values are not permitted by the spec and
// should not occur during normal typechecking passes, but this path is
// reachable via the AssignableTo API.
if !isString(target) {
return nil, nil, InvalidUntypedConversion
}
case UntypedNil:
// Unsafe.Pointer is a basic type that includes nil.
if !hasNil(target) {
return nil, nil, InvalidUntypedConversion
}
// Preserve the type of nil as UntypedNil: see go.dev/issue/13061.
return Typ[UntypedNil], nil, 0
default:
return nil, nil, InvalidUntypedConversion
}
case *Interface:
if isTypeParam(target) {
if !underIs(target, func(u Type) bool {
if u == nil {
return false
}
t, _, _ := check.implicitTypeAndValue(x, u)
return t != nil
}) {
return nil, nil, InvalidUntypedConversion
}
// keep nil untyped (was bug go.dev/issue/39755)
if x.isNil() {
return Typ[UntypedNil], nil, 0
}
break
}
// Values must have concrete dynamic types. If the value is nil,
// keep it untyped (this is important for tools such as go vet which
// need the dynamic type for argument checking of say, print
// functions)
if x.isNil() {
return Typ[UntypedNil], nil, 0
}
// cannot assign untyped values to non-empty interfaces
if !u.Empty() {
return nil, nil, InvalidUntypedConversion
}
return Default(x.typ), nil, 0
case *Pointer, *Signature, *Slice, *Map, *Chan:
if !x.isNil() {
return nil, nil, InvalidUntypedConversion
}
// Keep nil untyped - see comment for interfaces, above.
return Typ[UntypedNil], nil, 0
default:
return nil, nil, InvalidUntypedConversion
}
return target, nil, 0
}
// If switchCase is true, the operator op is ignored.
func (check *Checker) comparison(x, y *operand, op token.Token, switchCase bool) {
// Avoid spurious errors if any of the operands has an invalid type (go.dev/issue/54405).
if !isValid(x.typ) || !isValid(y.typ) {
x.mode = invalid
return
}
if switchCase {
op = token.EQL
}
errOp := x // operand for which error is reported, if any
cause := "" // specific error cause, if any
// spec: "In any comparison, the first operand must be assignable
// to the type of the second operand, or vice versa."
code := MismatchedTypes
ok, _ := x.assignableTo(check, y.typ, nil)
if !ok {
ok, _ = y.assignableTo(check, x.typ, nil)
}
if !ok {
// Report the error on the 2nd operand since we only
// know after seeing the 2nd operand whether we have
// a type mismatch.
errOp = y
cause = check.sprintf("mismatched types %s and %s", x.typ, y.typ)
goto Error
}
// check if comparison is defined for operands
code = UndefinedOp
switch op {
case token.EQL, token.NEQ:
// spec: "The equality operators == and != apply to operands that are comparable."
switch {
case x.isNil() || y.isNil():
// Comparison against nil requires that the other operand type has nil.
typ := x.typ
if x.isNil() {
typ = y.typ
}
if !hasNil(typ) {
// This case should only be possible for "nil == nil".
// Report the error on the 2nd operand since we only
// know after seeing the 2nd operand whether we have
// an invalid comparison.
errOp = y
goto Error
}
case !Comparable(x.typ):
errOp = x
cause = check.incomparableCause(x.typ)
goto Error
case !Comparable(y.typ):
errOp = y
cause = check.incomparableCause(y.typ)
goto Error
}
case token.LSS, token.LEQ, token.GTR, token.GEQ:
// spec: The ordering operators <, <=, >, and >= apply to operands that are ordered."
switch {
case !allOrdered(x.typ):
errOp = x
goto Error
case !allOrdered(y.typ):
errOp = y
goto Error
}
default:
panic("unreachable")
}
// comparison is ok
if x.mode == constant_ && y.mode == constant_ {
x.val = constant.MakeBool(constant.Compare(x.val, op, y.val))
// The operands are never materialized; no need to update
// their types.
} else {
x.mode = value
// The operands have now their final types, which at run-
// time will be materialized. Update the expression trees.
// If the current types are untyped, the materialized type
// is the respective default type.
check.updateExprType(x.expr, Default(x.typ), true)
check.updateExprType(y.expr, Default(y.typ), true)
}
// spec: "Comparison operators compare two operands and yield
// an untyped boolean value."
x.typ = Typ[UntypedBool]
return
Error:
// We have an offending operand errOp and possibly an error cause.
if cause == "" {
if isTypeParam(x.typ) || isTypeParam(y.typ) {
// TODO(gri) should report the specific type causing the problem, if any
if !isTypeParam(x.typ) {
errOp = y
}
cause = check.sprintf("type parameter %s cannot use operator %s", errOp.typ, op)
} else {
// catch-all neither x nor y is a type parameter
what := compositeKind(errOp.typ)
if what == "" {
what = check.sprintf("%s", errOp.typ)
}
cause = check.sprintf("operator %s not defined on %s", op, what)
}
}
if switchCase {
check.errorf(x, code, "invalid case %s in switch on %s (%s)", x.expr, y.expr, cause) // error position always at 1st operand
} else {
check.errorf(errOp, code, invalidOp+"%s %s %s (%s)", x.expr, op, y.expr, cause)
}
x.mode = invalid
}
// incomparableCause returns a more specific cause why typ is not comparable.
// If there is no more specific cause, the result is "".
func (check *Checker) incomparableCause(typ Type) string {
switch under(typ).(type) {
case *Slice, *Signature, *Map:
return compositeKind(typ) + " can only be compared to nil"
}
// see if we can extract a more specific error
return comparableType(typ, true, nil).format(check)
}
// If e != nil, it must be the shift expression; it may be nil for non-constant shifts.
func (check *Checker) shift(x, y *operand, e ast.Expr, op token.Token) {
// TODO(gri) This function seems overly complex. Revisit.
var xval constant.Value
if x.mode == constant_ {
xval = constant.ToInt(x.val)
}
if allInteger(x.typ) || isUntyped(x.typ) && xval != nil && xval.Kind() == constant.Int {
// The lhs is of integer type or an untyped constant representable
// as an integer. Nothing to do.
} else {
// shift has no chance
check.errorf(x, InvalidShiftOperand, invalidOp+"shifted operand %s must be integer", x)
x.mode = invalid
return
}
// spec: "The right operand in a shift expression must have integer type
// or be an untyped constant representable by a value of type uint."
// Check that constants are representable by uint, but do not convert them
// (see also go.dev/issue/47243).
var yval constant.Value
if y.mode == constant_ {
// Provide a good error message for negative shift counts.
yval = constant.ToInt(y.val) // consider -1, 1.0, but not -1.1
if yval.Kind() == constant.Int && constant.Sign(yval) < 0 {
check.errorf(y, InvalidShiftCount, invalidOp+"negative shift count %s", y)
x.mode = invalid
return
}
if isUntyped(y.typ) {
// Caution: Check for representability here, rather than in the switch
// below, because isInteger includes untyped integers (was bug go.dev/issue/43697).
check.representable(y, Typ[Uint])
if y.mode == invalid {
x.mode = invalid
return
}
}
} else {
// Check that RHS is otherwise at least of integer type.
switch {
case allInteger(y.typ):
if !allUnsigned(y.typ) && !check.verifyVersionf(y, go1_13, invalidOp+"signed shift count %s", y) {
x.mode = invalid
return
}
case isUntyped(y.typ):
// This is incorrect, but preserves pre-existing behavior.
// See also go.dev/issue/47410.
check.convertUntyped(y, Typ[Uint])
if y.mode == invalid {
x.mode = invalid
return
}
default:
check.errorf(y, InvalidShiftCount, invalidOp+"shift count %s must be integer", y)
x.mode = invalid
return
}
}
if x.mode == constant_ {
if y.mode == constant_ {
// if either x or y has an unknown value, the result is unknown
if x.val.Kind() == constant.Unknown || y.val.Kind() == constant.Unknown {
x.val = constant.MakeUnknown()
// ensure the correct type - see comment below
if !isInteger(x.typ) {
x.typ = Typ[UntypedInt]
}
return
}
// rhs must be within reasonable bounds in constant shifts
const shiftBound = 1023 - 1 + 52 // so we can express smallestFloat64 (see go.dev/issue/44057)
s, ok := constant.Uint64Val(yval)
if !ok || s > shiftBound {
check.errorf(y, InvalidShiftCount, invalidOp+"invalid shift count %s", y)
x.mode = invalid
return
}
// The lhs is representable as an integer but may not be an integer
// (e.g., 2.0, an untyped float) - this can only happen for untyped
// non-integer numeric constants. Correct the type so that the shift
// result is of integer type.
if !isInteger(x.typ) {
x.typ = Typ[UntypedInt]
}
// x is a constant so xval != nil and it must be of Int kind.
x.val = constant.Shift(xval, op, uint(s))
x.expr = e
check.overflow(x, opPos(x.expr))
return
}
// non-constant shift with constant lhs
if isUntyped(x.typ) {
// spec: "If the left operand of a non-constant shift
// expression is an untyped constant, the type of the
// constant is what it would be if the shift expression
// were replaced by its left operand alone.".
//
// Delay operand checking until we know the final type
// by marking the lhs expression as lhs shift operand.
//
// Usually (in correct programs), the lhs expression
// is in the untyped map. However, it is possible to
// create incorrect programs where the same expression
// is evaluated twice (via a declaration cycle) such
// that the lhs expression type is determined in the
// first round and thus deleted from the map, and then
// not found in the second round (double insertion of
// the same expr node still just leads to one entry for
// that node, and it can only be deleted once).
// Be cautious and check for presence of entry.
// Example: var e, f = int(1<<""[f]) // go.dev/issue/11347
if info, found := check.untyped[x.expr]; found {
info.isLhs = true
check.untyped[x.expr] = info
}
// keep x's type
x.mode = value
return
}
}
// non-constant shift - lhs must be an integer
if !allInteger(x.typ) {
check.errorf(x, InvalidShiftOperand, invalidOp+"shifted operand %s must be integer", x)
x.mode = invalid
return
}
x.mode = value
}
var binaryOpPredicates opPredicates
func init() {
// Setting binaryOpPredicates in init avoids declaration cycles.
binaryOpPredicates = opPredicates{
token.ADD: allNumericOrString,
token.SUB: allNumeric,
token.MUL: allNumeric,
token.QUO: allNumeric,
token.REM: allInteger,
token.AND: allInteger,
token.OR: allInteger,
token.XOR: allInteger,
token.AND_NOT: allInteger,
token.LAND: allBoolean,
token.LOR: allBoolean,
}
}
// If e != nil, it must be the binary expression; it may be nil for non-constant expressions
// (when invoked for an assignment operation where the binary expression is implicit).
func (check *Checker) binary(x *operand, e ast.Expr, lhs, rhs ast.Expr, op token.Token, opPos token.Pos) {
var y operand
check.expr(nil, x, lhs)
check.expr(nil, &y, rhs)
if x.mode == invalid {
return
}
if y.mode == invalid {
x.mode = invalid
x.expr = y.expr
return
}
if isShift(op) {
check.shift(x, &y, e, op)
return
}
check.matchTypes(x, &y)
if x.mode == invalid {
return
}
if isComparison(op) {
check.comparison(x, &y, op, false)
return
}
if !Identical(x.typ, y.typ) {
// only report an error if we have valid types
// (otherwise we had an error reported elsewhere already)
if isValid(x.typ) && isValid(y.typ) {
var posn positioner = x
if e != nil {
posn = e
}
if e != nil {
check.errorf(posn, MismatchedTypes, invalidOp+"%s (mismatched types %s and %s)", e, x.typ, y.typ)
} else {
check.errorf(posn, MismatchedTypes, invalidOp+"%s %s= %s (mismatched types %s and %s)", lhs, op, rhs, x.typ, y.typ)
}
}
x.mode = invalid
return
}
if !check.op(binaryOpPredicates, x, op) {
x.mode = invalid
return
}
if op == token.QUO || op == token.REM {
// check for zero divisor
if (x.mode == constant_ || allInteger(x.typ)) && y.mode == constant_ && constant.Sign(y.val) == 0 {
check.error(&y, DivByZero, invalidOp+"division by zero")
x.mode = invalid
return
}
// check for divisor underflow in complex division (see go.dev/issue/20227)
if x.mode == constant_ && y.mode == constant_ && isComplex(x.typ) {
re, im := constant.Real(y.val), constant.Imag(y.val)
re2, im2 := constant.BinaryOp(re, token.MUL, re), constant.BinaryOp(im, token.MUL, im)
if constant.Sign(re2) == 0 && constant.Sign(im2) == 0 {
check.error(&y, DivByZero, invalidOp+"division by zero")
x.mode = invalid
return
}
}
}
if x.mode == constant_ && y.mode == constant_ {
// if either x or y has an unknown value, the result is unknown
if x.val.Kind() == constant.Unknown || y.val.Kind() == constant.Unknown {
x.val = constant.MakeUnknown()
// x.typ is unchanged
return
}
// force integer division of integer operands
if op == token.QUO && isInteger(x.typ) {
op = token.QUO_ASSIGN
}
x.val = constant.BinaryOp(x.val, op, y.val)
x.expr = e
check.overflow(x, opPos)
return
}
x.mode = value
// x.typ is unchanged
}
// matchTypes attempts to convert any untyped types x and y such that they match.
// If an error occurs, x.mode is set to invalid.
func (check *Checker) matchTypes(x, y *operand) {
// mayConvert reports whether the operands x and y may
// possibly have matching types after converting one
// untyped operand to the type of the other.
// If mayConvert returns true, we try to convert the
// operands to each other's types, and if that fails
// we report a conversion failure.
// If mayConvert returns false, we continue without an
// attempt at conversion, and if the operand types are
// not compatible, we report a type mismatch error.
mayConvert := func(x, y *operand) bool {
// If both operands are typed, there's no need for an implicit conversion.
if isTyped(x.typ) && isTyped(y.typ) {
return false
}
// An untyped operand may convert to its default type when paired with an empty interface
// TODO(gri) This should only matter for comparisons (the only binary operation that is
// valid with interfaces), but in that case the assignability check should take
// care of the conversion. Verify and possibly eliminate this extra test.
if isNonTypeParamInterface(x.typ) || isNonTypeParamInterface(y.typ) {
return true
}
// A boolean type can only convert to another boolean type.
if allBoolean(x.typ) != allBoolean(y.typ) {
return false
}
// A string type can only convert to another string type.
if allString(x.typ) != allString(y.typ) {
return false
}
// Untyped nil can only convert to a type that has a nil.
if x.isNil() {
return hasNil(y.typ)
}
if y.isNil() {
return hasNil(x.typ)
}
// An untyped operand cannot convert to a pointer.
// TODO(gri) generalize to type parameters
if isPointer(x.typ) || isPointer(y.typ) {
return false
}
return true
}
if mayConvert(x, y) {
check.convertUntyped(x, y.typ)
if x.mode == invalid {
return
}
check.convertUntyped(y, x.typ)
if y.mode == invalid {
x.mode = invalid
return
}
}
}
// exprKind describes the kind of an expression; the kind
// determines if an expression is valid in 'statement context'.
type exprKind int
const (
conversion exprKind = iota
expression
statement
)
// target represent the (signature) type and description of the LHS
// variable of an assignment, or of a function result variable.
type target struct {
sig *Signature
desc string
}
// newTarget creates a new target for the given type and description.
// The result is nil if typ is not a signature.
func newTarget(typ Type, desc string) *target {
if typ != nil {
if sig, _ := under(typ).(*Signature); sig != nil {
return &target{sig, desc}
}
}
return nil
}
// rawExpr typechecks expression e and initializes x with the expression
// value or type. If an error occurred, x.mode is set to invalid.
// If a non-nil target T is given and e is a generic function,
// T is used to infer the type arguments for e.
// If hint != nil, it is the type of a composite literal element.
// If allowGeneric is set, the operand type may be an uninstantiated
// parameterized type or function value.
func (check *Checker) rawExpr(T *target, x *operand, e ast.Expr, hint Type, allowGeneric bool) exprKind {
if check.conf._Trace {
check.trace(e.Pos(), "-- expr %s", e)
check.indent++
defer func() {
check.indent--
check.trace(e.Pos(), "=> %s", x)
}()
}
kind := check.exprInternal(T, x, e, hint)
if !allowGeneric {
check.nonGeneric(T, x)
}
check.record(x)
return kind
}
// If x is a generic type, or a generic function whose type arguments cannot be inferred
// from a non-nil target T, nonGeneric reports an error and invalidates x.mode and x.typ.
// Otherwise it leaves x alone.
func (check *Checker) nonGeneric(T *target, x *operand) {
if x.mode == invalid || x.mode == novalue {
return
}
var what string
switch t := x.typ.(type) {
case *Alias, *Named:
if isGeneric(t) {
what = "type"