-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstmt.go
842 lines (763 loc) · 23.1 KB
/
stmt.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements typechecking of statements.
package types2
import (
"cmd/compile/internal/syntax"
"go/constant"
. "internal/types/errors"
"slices"
)
// decl may be nil
func (check *Checker) funcBody(decl *declInfo, name string, sig *Signature, body *syntax.BlockStmt, iota constant.Value) {
if check.conf.IgnoreFuncBodies {
panic("function body not ignored")
}
if check.conf.Trace {
check.trace(body.Pos(), "-- %s: %s", name, sig)
}
// save/restore current environment and set up function environment
// (and use 0 indentation at function start)
defer func(env environment, indent int) {
check.environment = env
check.indent = indent
}(check.environment, check.indent)
check.environment = environment{
decl: decl,
scope: sig.scope,
version: check.version, // TODO(adonovan): would decl.version (if decl != nil) be better?
iota: iota,
sig: sig,
}
check.indent = 0
check.stmtList(0, body.List)
if check.hasLabel && !check.conf.IgnoreBranchErrors {
check.labels(body)
}
if sig.results.Len() > 0 && !check.isTerminating(body, "") {
check.error(body.Rbrace, MissingReturn, "missing return")
}
// spec: "Implementation restriction: A compiler may make it illegal to
// declare a variable inside a function body if the variable is never used."
check.usage(sig.scope)
}
func (check *Checker) usage(scope *Scope) {
needUse := func(kind VarKind) bool {
return !(kind == RecvVar || kind == ParamVar || kind == ResultVar)
}
var unused []*Var
for name, elem := range scope.elems {
elem = resolve(name, elem)
if v, _ := elem.(*Var); v != nil && needUse(v.kind) && !check.usedVars[v] {
unused = append(unused, v)
}
}
slices.SortFunc(unused, func(a, b *Var) int {
return cmpPos(a.pos, b.pos)
})
for _, v := range unused {
check.softErrorf(v.pos, UnusedVar, "declared and not used: %s", v.name)
}
for _, scope := range scope.children {
// Don't go inside function literal scopes a second time;
// they are handled explicitly by funcBody.
if !scope.isFunc {
check.usage(scope)
}
}
}
// stmtContext is a bitset describing which
// control-flow statements are permissible,
// and provides additional context information
// for better error messages.
type stmtContext uint
const (
// permissible control-flow statements
breakOk stmtContext = 1 << iota
continueOk
fallthroughOk
// additional context information
finalSwitchCase
inTypeSwitch
)
func (check *Checker) simpleStmt(s syntax.Stmt) {
if s != nil {
check.stmt(0, s)
}
}
func trimTrailingEmptyStmts(list []syntax.Stmt) []syntax.Stmt {
for i := len(list); i > 0; i-- {
if _, ok := list[i-1].(*syntax.EmptyStmt); !ok {
return list[:i]
}
}
return nil
}
func (check *Checker) stmtList(ctxt stmtContext, list []syntax.Stmt) {
ok := ctxt&fallthroughOk != 0
inner := ctxt &^ fallthroughOk
list = trimTrailingEmptyStmts(list) // trailing empty statements are "invisible" to fallthrough analysis
for i, s := range list {
inner := inner
if ok && i+1 == len(list) {
inner |= fallthroughOk
}
check.stmt(inner, s)
}
}
func (check *Checker) multipleSwitchDefaults(list []*syntax.CaseClause) {
var first *syntax.CaseClause
for _, c := range list {
if c.Cases == nil {
if first != nil {
check.errorf(c, DuplicateDefault, "multiple defaults (first at %s)", first.Pos())
// TODO(gri) probably ok to bail out after first error (and simplify this code)
} else {
first = c
}
}
}
}
func (check *Checker) multipleSelectDefaults(list []*syntax.CommClause) {
var first *syntax.CommClause
for _, c := range list {
if c.Comm == nil {
if first != nil {
check.errorf(c, DuplicateDefault, "multiple defaults (first at %s)", first.Pos())
// TODO(gri) probably ok to bail out after first error (and simplify this code)
} else {
first = c
}
}
}
}
func (check *Checker) openScope(node syntax.Node, comment string) {
scope := NewScope(check.scope, node.Pos(), syntax.EndPos(node), comment)
check.recordScope(node, scope)
check.scope = scope
}
func (check *Checker) closeScope() {
check.scope = check.scope.Parent()
}
func (check *Checker) suspendedCall(keyword string, call syntax.Expr) {
code := InvalidDefer
if keyword == "go" {
code = InvalidGo
}
if _, ok := call.(*syntax.CallExpr); !ok {
check.errorf(call, code, "expression in %s must be function call", keyword)
check.use(call)
return
}
var x operand
var msg string
switch check.rawExpr(nil, &x, call, nil, false) {
case conversion:
msg = "requires function call, not conversion"
case expression:
msg = "discards result of"
code = UnusedResults
case statement:
return
default:
panic("unreachable")
}
check.errorf(&x, code, "%s %s %s", keyword, msg, &x)
}
// goVal returns the Go value for val, or nil.
func goVal(val constant.Value) interface{} {
// val should exist, but be conservative and check
if val == nil {
return nil
}
// Match implementation restriction of other compilers.
// gc only checks duplicates for integer, floating-point
// and string values, so only create Go values for these
// types.
switch val.Kind() {
case constant.Int:
if x, ok := constant.Int64Val(val); ok {
return x
}
if x, ok := constant.Uint64Val(val); ok {
return x
}
case constant.Float:
if x, ok := constant.Float64Val(val); ok {
return x
}
case constant.String:
return constant.StringVal(val)
}
return nil
}
// A valueMap maps a case value (of a basic Go type) to a list of positions
// where the same case value appeared, together with the corresponding case
// types.
// Since two case values may have the same "underlying" value but different
// types we need to also check the value's types (e.g., byte(1) vs myByte(1))
// when the switch expression is of interface type.
type (
valueMap map[interface{}][]valueType // underlying Go value -> valueType
valueType struct {
pos syntax.Pos
typ Type
}
)
func (check *Checker) caseValues(x *operand, values []syntax.Expr, seen valueMap) {
L:
for _, e := range values {
var v operand
check.expr(nil, &v, e)
if x.mode == invalid || v.mode == invalid {
continue L
}
check.convertUntyped(&v, x.typ)
if v.mode == invalid {
continue L
}
// Order matters: By comparing v against x, error positions are at the case values.
res := v // keep original v unchanged
check.comparison(&res, x, syntax.Eql, true)
if res.mode == invalid {
continue L
}
if v.mode != constant_ {
continue L // we're done
}
// look for duplicate values
if val := goVal(v.val); val != nil {
// look for duplicate types for a given value
// (quadratic algorithm, but these lists tend to be very short)
for _, vt := range seen[val] {
if Identical(v.typ, vt.typ) {
err := check.newError(DuplicateCase)
err.addf(&v, "duplicate case %s in expression switch", &v)
err.addf(vt.pos, "previous case")
err.report()
continue L
}
}
seen[val] = append(seen[val], valueType{v.Pos(), v.typ})
}
}
}
// isNil reports whether the expression e denotes the predeclared value nil.
func (check *Checker) isNil(e syntax.Expr) bool {
// The only way to express the nil value is by literally writing nil (possibly in parentheses).
if name, _ := syntax.Unparen(e).(*syntax.Name); name != nil {
_, ok := check.lookup(name.Value).(*Nil)
return ok
}
return false
}
// caseTypes typechecks the type expressions of a type case, checks for duplicate types
// using the seen map, and verifies that each type is valid with respect to the type of
// the operand x corresponding to the type switch expression. If that expression is not
// valid, x must be nil.
//
// switch <x>.(type) {
// case <types>: ...
// ...
// }
//
// caseTypes returns the case-specific type for a variable v introduced through a short
// variable declaration by the type switch:
//
// switch v := <x>.(type) {
// case <types>: // T is the type of <v> in this case
// ...
// }
//
// If there is exactly one type expression, T is the type of that expression. If there
// are multiple type expressions, or if predeclared nil is among the types, the result
// is the type of x. If x is invalid (nil), the result is the invalid type.
func (check *Checker) caseTypes(x *operand, types []syntax.Expr, seen map[Type]syntax.Expr) Type {
var T Type
var dummy operand
L:
for _, e := range types {
// The spec allows the value nil instead of a type.
if check.isNil(e) {
T = nil
check.expr(nil, &dummy, e) // run e through expr so we get the usual Info recordings
} else {
T = check.varType(e)
if !isValid(T) {
continue L
}
}
// look for duplicate types
// (quadratic algorithm, but type switches tend to be reasonably small)
for t, other := range seen {
if T == nil && t == nil || T != nil && t != nil && Identical(T, t) {
// talk about "case" rather than "type" because of nil case
Ts := "nil"
if T != nil {
Ts = TypeString(T, check.qualifier)
}
err := check.newError(DuplicateCase)
err.addf(e, "duplicate case %s in type switch", Ts)
err.addf(other, "previous case")
err.report()
continue L
}
}
seen[T] = e
if x != nil && T != nil {
check.typeAssertion(e, x, T, true)
}
}
// spec: "In clauses with a case listing exactly one type, the variable has that type;
// otherwise, the variable has the type of the expression in the TypeSwitchGuard.
if len(types) != 1 || T == nil {
T = Typ[Invalid]
if x != nil {
T = x.typ
}
}
assert(T != nil)
return T
}
// TODO(gri) Once we are certain that typeHash is correct in all situations, use this version of caseTypes instead.
// (Currently it may be possible that different types have identical names and import paths due to ImporterFrom.)
func (check *Checker) caseTypes_currently_unused(x *operand, xtyp *Interface, types []syntax.Expr, seen map[string]syntax.Expr) Type {
var T Type
var dummy operand
L:
for _, e := range types {
// The spec allows the value nil instead of a type.
var hash string
if check.isNil(e) {
check.expr(nil, &dummy, e) // run e through expr so we get the usual Info recordings
T = nil
hash = "<nil>" // avoid collision with a type named nil
} else {
T = check.varType(e)
if !isValid(T) {
continue L
}
panic("enable typeHash(T, nil)")
// hash = typeHash(T, nil)
}
// look for duplicate types
if other := seen[hash]; other != nil {
// talk about "case" rather than "type" because of nil case
Ts := "nil"
if T != nil {
Ts = TypeString(T, check.qualifier)
}
err := check.newError(DuplicateCase)
err.addf(e, "duplicate case %s in type switch", Ts)
err.addf(other, "previous case")
err.report()
continue L
}
seen[hash] = e
if T != nil {
check.typeAssertion(e, x, T, true)
}
}
// spec: "In clauses with a case listing exactly one type, the variable has that type;
// otherwise, the variable has the type of the expression in the TypeSwitchGuard.
if len(types) != 1 || T == nil {
T = Typ[Invalid]
if x != nil {
T = x.typ
}
}
assert(T != nil)
return T
}
// stmt typechecks statement s.
func (check *Checker) stmt(ctxt stmtContext, s syntax.Stmt) {
// statements must end with the same top scope as they started with
if debug {
defer func(scope *Scope) {
// don't check if code is panicking
if p := recover(); p != nil {
panic(p)
}
assert(scope == check.scope)
}(check.scope)
}
// process collected function literals before scope changes
defer check.processDelayed(len(check.delayed))
// reset context for statements of inner blocks
inner := ctxt &^ (fallthroughOk | finalSwitchCase | inTypeSwitch)
switch s := s.(type) {
case *syntax.EmptyStmt:
// ignore
case *syntax.DeclStmt:
check.declStmt(s.DeclList)
case *syntax.LabeledStmt:
check.hasLabel = true
check.stmt(ctxt, s.Stmt)
case *syntax.ExprStmt:
// spec: "With the exception of specific built-in functions,
// function and method calls and receive operations can appear
// in statement context. Such statements may be parenthesized."
var x operand
kind := check.rawExpr(nil, &x, s.X, nil, false)
var msg string
var code Code
switch x.mode {
default:
if kind == statement {
return
}
msg = "is not used"
code = UnusedExpr
case builtin:
msg = "must be called"
code = UncalledBuiltin
case typexpr:
msg = "is not an expression"
code = NotAnExpr
}
check.errorf(&x, code, "%s %s", &x, msg)
case *syntax.SendStmt:
var ch, val operand
check.expr(nil, &ch, s.Chan)
check.expr(nil, &val, s.Value)
if ch.mode == invalid || val.mode == invalid {
return
}
if elem := check.chanElem(s, &ch, false); elem != nil {
check.assignment(&val, elem, "send")
}
case *syntax.AssignStmt:
if s.Rhs == nil {
// x++ or x--
// (no need to call unpackExpr as s.Lhs must be single-valued)
var x operand
check.expr(nil, &x, s.Lhs)
if x.mode == invalid {
return
}
if !allNumeric(x.typ) {
check.errorf(s.Lhs, NonNumericIncDec, invalidOp+"%s%s%s (non-numeric type %s)", s.Lhs, s.Op, s.Op, x.typ)
return
}
check.assignVar(s.Lhs, nil, &x, "assignment")
return
}
lhs := syntax.UnpackListExpr(s.Lhs)
rhs := syntax.UnpackListExpr(s.Rhs)
switch s.Op {
case 0:
check.assignVars(lhs, rhs)
return
case syntax.Def:
check.shortVarDecl(s.Pos(), lhs, rhs)
return
}
// assignment operations
if len(lhs) != 1 || len(rhs) != 1 {
check.errorf(s, MultiValAssignOp, "assignment operation %s requires single-valued expressions", s.Op)
return
}
var x operand
check.binary(&x, nil, lhs[0], rhs[0], s.Op)
check.assignVar(lhs[0], nil, &x, "assignment")
case *syntax.CallStmt:
kind := "go"
if s.Tok == syntax.Defer {
kind = "defer"
}
check.suspendedCall(kind, s.Call)
case *syntax.ReturnStmt:
res := check.sig.results
// Return with implicit results allowed for function with named results.
// (If one is named, all are named.)
results := syntax.UnpackListExpr(s.Results)
if len(results) == 0 && res.Len() > 0 && res.vars[0].name != "" {
// spec: "Implementation restriction: A compiler may disallow an empty expression
// list in a "return" statement if a different entity (constant, type, or variable)
// with the same name as a result parameter is in scope at the place of the return."
for _, obj := range res.vars {
if alt := check.lookup(obj.name); alt != nil && alt != obj {
err := check.newError(OutOfScopeResult)
err.addf(s, "result parameter %s not in scope at return", obj.name)
err.addf(alt, "inner declaration of %s", obj)
err.report()
// ok to continue
}
}
} else {
var lhs []*Var
if res.Len() > 0 {
lhs = res.vars
}
check.initVars(lhs, results, s)
}
case *syntax.BranchStmt:
if s.Label != nil {
check.hasLabel = true
break // checked in 2nd pass (check.labels)
}
if check.conf.IgnoreBranchErrors {
break
}
switch s.Tok {
case syntax.Break:
if ctxt&breakOk == 0 {
check.error(s, MisplacedBreak, "break not in for, switch, or select statement")
}
case syntax.Continue:
if ctxt&continueOk == 0 {
check.error(s, MisplacedContinue, "continue not in for statement")
}
case syntax.Fallthrough:
if ctxt&fallthroughOk == 0 {
var msg string
switch {
case ctxt&finalSwitchCase != 0:
msg = "cannot fallthrough final case in switch"
case ctxt&inTypeSwitch != 0:
msg = "cannot fallthrough in type switch"
default:
msg = "fallthrough statement out of place"
}
check.error(s, MisplacedFallthrough, msg)
}
case syntax.Goto:
// goto's must have labels, should have been caught above
fallthrough
default:
check.errorf(s, InvalidSyntaxTree, "branch statement: %s", s.Tok)
}
case *syntax.BlockStmt:
check.openScope(s, "block")
defer check.closeScope()
check.stmtList(inner, s.List)
case *syntax.IfStmt:
check.openScope(s, "if")
defer check.closeScope()
check.simpleStmt(s.Init)
var x operand
check.expr(nil, &x, s.Cond)
if x.mode != invalid && !allBoolean(x.typ) {
check.error(s.Cond, InvalidCond, "non-boolean condition in if statement")
}
check.stmt(inner, s.Then)
// The parser produces a correct AST but if it was modified
// elsewhere the else branch may be invalid. Check again.
switch s.Else.(type) {
case nil:
// valid or error already reported
case *syntax.IfStmt, *syntax.BlockStmt:
check.stmt(inner, s.Else)
default:
check.error(s.Else, InvalidSyntaxTree, "invalid else branch in if statement")
}
case *syntax.SwitchStmt:
inner |= breakOk
check.openScope(s, "switch")
defer check.closeScope()
check.simpleStmt(s.Init)
if g, _ := s.Tag.(*syntax.TypeSwitchGuard); g != nil {
check.typeSwitchStmt(inner|inTypeSwitch, s, g)
} else {
check.switchStmt(inner, s)
}
case *syntax.SelectStmt:
inner |= breakOk
check.multipleSelectDefaults(s.Body)
for _, clause := range s.Body {
if clause == nil {
continue // error reported before
}
// clause.Comm must be a SendStmt, RecvStmt, or default case
valid := false
var rhs syntax.Expr // rhs of RecvStmt, or nil
switch s := clause.Comm.(type) {
case nil, *syntax.SendStmt:
valid = true
case *syntax.AssignStmt:
if _, ok := s.Rhs.(*syntax.ListExpr); !ok {
rhs = s.Rhs
}
case *syntax.ExprStmt:
rhs = s.X
}
// if present, rhs must be a receive operation
if rhs != nil {
if x, _ := syntax.Unparen(rhs).(*syntax.Operation); x != nil && x.Y == nil && x.Op == syntax.Recv {
valid = true
}
}
if !valid {
check.error(clause.Comm, InvalidSelectCase, "select case must be send or receive (possibly with assignment)")
continue
}
check.openScope(clause, "case")
if clause.Comm != nil {
check.stmt(inner, clause.Comm)
}
check.stmtList(inner, clause.Body)
check.closeScope()
}
case *syntax.ForStmt:
inner |= breakOk | continueOk
if rclause, _ := s.Init.(*syntax.RangeClause); rclause != nil {
// extract sKey, sValue, s.Extra from the range clause
sKey := rclause.Lhs // possibly nil
var sValue, sExtra syntax.Expr // possibly nil
if p, _ := sKey.(*syntax.ListExpr); p != nil {
if len(p.ElemList) < 2 {
check.error(s, InvalidSyntaxTree, "invalid lhs in range clause")
return
}
// len(p.ElemList) >= 2
sKey = p.ElemList[0]
sValue = p.ElemList[1]
if len(p.ElemList) > 2 {
// delay error reporting until we know more
sExtra = p.ElemList[2]
}
}
check.rangeStmt(inner, s, s, sKey, sValue, sExtra, rclause.X, rclause.Def)
break
}
check.openScope(s, "for")
defer check.closeScope()
check.simpleStmt(s.Init)
if s.Cond != nil {
var x operand
check.expr(nil, &x, s.Cond)
if x.mode != invalid && !allBoolean(x.typ) {
check.error(s.Cond, InvalidCond, "non-boolean condition in for statement")
}
}
check.simpleStmt(s.Post)
// spec: "The init statement may be a short variable
// declaration, but the post statement must not."
if s, _ := s.Post.(*syntax.AssignStmt); s != nil && s.Op == syntax.Def {
// The parser already reported an error.
check.use(s.Lhs) // avoid follow-up errors
}
check.stmt(inner, s.Body)
default:
check.error(s, InvalidSyntaxTree, "invalid statement")
}
}
func (check *Checker) switchStmt(inner stmtContext, s *syntax.SwitchStmt) {
// init statement already handled
var x operand
if s.Tag != nil {
check.expr(nil, &x, s.Tag)
// By checking assignment of x to an invisible temporary
// (as a compiler would), we get all the relevant checks.
check.assignment(&x, nil, "switch expression")
if x.mode != invalid && !Comparable(x.typ) && !hasNil(x.typ) {
check.errorf(&x, InvalidExprSwitch, "cannot switch on %s (%s is not comparable)", &x, x.typ)
x.mode = invalid
}
} else {
// spec: "A missing switch expression is
// equivalent to the boolean value true."
x.mode = constant_
x.typ = Typ[Bool]
x.val = constant.MakeBool(true)
// TODO(gri) should have a better position here
pos := s.Rbrace
if len(s.Body) > 0 {
pos = s.Body[0].Pos()
}
x.expr = syntax.NewName(pos, "true")
}
check.multipleSwitchDefaults(s.Body)
seen := make(valueMap) // map of seen case values to positions and types
for i, clause := range s.Body {
if clause == nil {
check.error(clause, InvalidSyntaxTree, "incorrect expression switch case")
continue
}
inner := inner
if i+1 < len(s.Body) {
inner |= fallthroughOk
} else {
inner |= finalSwitchCase
}
check.caseValues(&x, syntax.UnpackListExpr(clause.Cases), seen)
check.openScope(clause, "case")
check.stmtList(inner, clause.Body)
check.closeScope()
}
}
func (check *Checker) typeSwitchStmt(inner stmtContext, s *syntax.SwitchStmt, guard *syntax.TypeSwitchGuard) {
// init statement already handled
// A type switch guard must be of the form:
//
// TypeSwitchGuard = [ identifier ":=" ] PrimaryExpr "." "(" "type" ")" .
// \__lhs__/ \___rhs___/
// check lhs, if any
lhs := guard.Lhs
if lhs != nil {
if lhs.Value == "_" {
// _ := x.(type) is an invalid short variable declaration
check.softErrorf(lhs, NoNewVar, "no new variable on left side of :=")
lhs = nil // avoid declared and not used error below
} else {
check.recordDef(lhs, nil) // lhs variable is implicitly declared in each cause clause
}
}
// check rhs
var sx *operand // switch expression against which cases are compared against; nil if invalid
{
var x operand
check.expr(nil, &x, guard.X)
if x.mode != invalid {
if isTypeParam(x.typ) {
check.errorf(&x, InvalidTypeSwitch, "cannot use type switch on type parameter value %s", &x)
} else if IsInterface(x.typ) {
sx = &x
} else {
check.errorf(&x, InvalidTypeSwitch, "%s is not an interface", &x)
}
}
}
check.multipleSwitchDefaults(s.Body)
var lhsVars []*Var // list of implicitly declared lhs variables
seen := make(map[Type]syntax.Expr) // map of seen types to positions
for _, clause := range s.Body {
if clause == nil {
check.error(s, InvalidSyntaxTree, "incorrect type switch case")
continue
}
// Check each type in this type switch case.
cases := syntax.UnpackListExpr(clause.Cases)
T := check.caseTypes(sx, cases, seen)
check.openScope(clause, "case")
// If lhs exists, declare a corresponding variable in the case-local scope.
if lhs != nil {
obj := newVar(LocalVar, lhs.Pos(), check.pkg, lhs.Value, T)
check.declare(check.scope, nil, obj, clause.Colon)
check.recordImplicit(clause, obj)
// For the "declared and not used" error, all lhs variables act as
// one; i.e., if any one of them is 'used', all of them are 'used'.
// Collect them for later analysis.
lhsVars = append(lhsVars, obj)
}
check.stmtList(inner, clause.Body)
check.closeScope()
}
// If lhs exists, we must have at least one lhs variable that was used.
// (We can't use check.usage because that only looks at one scope; and
// we don't want to use the same variable for all scopes and change the
// variable type underfoot.)
if lhs != nil {
var used bool
for _, v := range lhsVars {
if check.usedVars[v] {
used = true
}
check.usedVars[v] = true // avoid usage error when checking entire function
}
if !used {
check.softErrorf(lhs, UnusedVar, "%s declared and not used", lhs.Value)
}
}
}