-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathldpe.go
822 lines (739 loc) · 26.5 KB
/
ldpe.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package loadpe implements a PE/COFF file reader.
package loadpe
import (
"bytes"
"cmd/internal/bio"
"cmd/internal/objabi"
"cmd/internal/sys"
"cmd/link/internal/loader"
"cmd/link/internal/sym"
"debug/pe"
"encoding/binary"
"errors"
"fmt"
"io"
"strings"
)
const (
IMAGE_SYM_UNDEFINED = 0
IMAGE_SYM_ABSOLUTE = -1
IMAGE_SYM_DEBUG = -2
IMAGE_SYM_TYPE_NULL = 0
IMAGE_SYM_TYPE_VOID = 1
IMAGE_SYM_TYPE_CHAR = 2
IMAGE_SYM_TYPE_SHORT = 3
IMAGE_SYM_TYPE_INT = 4
IMAGE_SYM_TYPE_LONG = 5
IMAGE_SYM_TYPE_FLOAT = 6
IMAGE_SYM_TYPE_DOUBLE = 7
IMAGE_SYM_TYPE_STRUCT = 8
IMAGE_SYM_TYPE_UNION = 9
IMAGE_SYM_TYPE_ENUM = 10
IMAGE_SYM_TYPE_MOE = 11
IMAGE_SYM_TYPE_BYTE = 12
IMAGE_SYM_TYPE_WORD = 13
IMAGE_SYM_TYPE_UINT = 14
IMAGE_SYM_TYPE_DWORD = 15
IMAGE_SYM_TYPE_PCODE = 32768
IMAGE_SYM_DTYPE_NULL = 0
IMAGE_SYM_DTYPE_POINTER = 1
IMAGE_SYM_DTYPE_FUNCTION = 2
IMAGE_SYM_DTYPE_ARRAY = 3
IMAGE_SYM_CLASS_END_OF_FUNCTION = -1
IMAGE_SYM_CLASS_NULL = 0
IMAGE_SYM_CLASS_AUTOMATIC = 1
IMAGE_SYM_CLASS_EXTERNAL = 2
IMAGE_SYM_CLASS_STATIC = 3
IMAGE_SYM_CLASS_REGISTER = 4
IMAGE_SYM_CLASS_EXTERNAL_DEF = 5
IMAGE_SYM_CLASS_LABEL = 6
IMAGE_SYM_CLASS_UNDEFINED_LABEL = 7
IMAGE_SYM_CLASS_MEMBER_OF_STRUCT = 8
IMAGE_SYM_CLASS_ARGUMENT = 9
IMAGE_SYM_CLASS_STRUCT_TAG = 10
IMAGE_SYM_CLASS_MEMBER_OF_UNION = 11
IMAGE_SYM_CLASS_UNION_TAG = 12
IMAGE_SYM_CLASS_TYPE_DEFINITION = 13
IMAGE_SYM_CLASS_UNDEFINED_STATIC = 14
IMAGE_SYM_CLASS_ENUM_TAG = 15
IMAGE_SYM_CLASS_MEMBER_OF_ENUM = 16
IMAGE_SYM_CLASS_REGISTER_PARAM = 17
IMAGE_SYM_CLASS_BIT_FIELD = 18
IMAGE_SYM_CLASS_FAR_EXTERNAL = 68 /* Not in PECOFF v8 spec */
IMAGE_SYM_CLASS_BLOCK = 100
IMAGE_SYM_CLASS_FUNCTION = 101
IMAGE_SYM_CLASS_END_OF_STRUCT = 102
IMAGE_SYM_CLASS_FILE = 103
IMAGE_SYM_CLASS_SECTION = 104
IMAGE_SYM_CLASS_WEAK_EXTERNAL = 105
IMAGE_SYM_CLASS_CLR_TOKEN = 107
IMAGE_REL_I386_ABSOLUTE = 0x0000
IMAGE_REL_I386_DIR16 = 0x0001
IMAGE_REL_I386_REL16 = 0x0002
IMAGE_REL_I386_DIR32 = 0x0006
IMAGE_REL_I386_DIR32NB = 0x0007
IMAGE_REL_I386_SEG12 = 0x0009
IMAGE_REL_I386_SECTION = 0x000A
IMAGE_REL_I386_SECREL = 0x000B
IMAGE_REL_I386_TOKEN = 0x000C
IMAGE_REL_I386_SECREL7 = 0x000D
IMAGE_REL_I386_REL32 = 0x0014
IMAGE_REL_AMD64_ABSOLUTE = 0x0000
IMAGE_REL_AMD64_ADDR64 = 0x0001
IMAGE_REL_AMD64_ADDR32 = 0x0002
IMAGE_REL_AMD64_ADDR32NB = 0x0003
IMAGE_REL_AMD64_REL32 = 0x0004
IMAGE_REL_AMD64_REL32_1 = 0x0005
IMAGE_REL_AMD64_REL32_2 = 0x0006
IMAGE_REL_AMD64_REL32_3 = 0x0007
IMAGE_REL_AMD64_REL32_4 = 0x0008
IMAGE_REL_AMD64_REL32_5 = 0x0009
IMAGE_REL_AMD64_SECTION = 0x000A
IMAGE_REL_AMD64_SECREL = 0x000B
IMAGE_REL_AMD64_SECREL7 = 0x000C
IMAGE_REL_AMD64_TOKEN = 0x000D
IMAGE_REL_AMD64_SREL32 = 0x000E
IMAGE_REL_AMD64_PAIR = 0x000F
IMAGE_REL_AMD64_SSPAN32 = 0x0010
IMAGE_REL_ARM_ABSOLUTE = 0x0000
IMAGE_REL_ARM_ADDR32 = 0x0001
IMAGE_REL_ARM_ADDR32NB = 0x0002
IMAGE_REL_ARM_BRANCH24 = 0x0003
IMAGE_REL_ARM_BRANCH11 = 0x0004
IMAGE_REL_ARM_SECTION = 0x000E
IMAGE_REL_ARM_SECREL = 0x000F
IMAGE_REL_ARM_MOV32 = 0x0010
IMAGE_REL_THUMB_MOV32 = 0x0011
IMAGE_REL_THUMB_BRANCH20 = 0x0012
IMAGE_REL_THUMB_BRANCH24 = 0x0014
IMAGE_REL_THUMB_BLX23 = 0x0015
IMAGE_REL_ARM_PAIR = 0x0016
IMAGE_REL_ARM64_ABSOLUTE = 0x0000
IMAGE_REL_ARM64_ADDR32 = 0x0001
IMAGE_REL_ARM64_ADDR32NB = 0x0002
IMAGE_REL_ARM64_BRANCH26 = 0x0003
IMAGE_REL_ARM64_PAGEBASE_REL21 = 0x0004
IMAGE_REL_ARM64_REL21 = 0x0005
IMAGE_REL_ARM64_PAGEOFFSET_12A = 0x0006
IMAGE_REL_ARM64_PAGEOFFSET_12L = 0x0007
IMAGE_REL_ARM64_SECREL = 0x0008
IMAGE_REL_ARM64_SECREL_LOW12A = 0x0009
IMAGE_REL_ARM64_SECREL_HIGH12A = 0x000A
IMAGE_REL_ARM64_SECREL_LOW12L = 0x000B
IMAGE_REL_ARM64_TOKEN = 0x000C
IMAGE_REL_ARM64_SECTION = 0x000D
IMAGE_REL_ARM64_ADDR64 = 0x000E
IMAGE_REL_ARM64_BRANCH19 = 0x000F
IMAGE_REL_ARM64_BRANCH14 = 0x0010
IMAGE_REL_ARM64_REL32 = 0x0011
)
const (
// When stored into the PLT value for a symbol, this token tells
// windynrelocsym to redirect direct references to this symbol to a stub
// that loads from the corresponding import symbol and then does
// a jump to the loaded value.
CreateImportStubPltToken = -2
// When stored into the GOT value for an import symbol __imp_X this
// token tells windynrelocsym to redirect references to the
// underlying DYNIMPORT symbol X.
RedirectToDynImportGotToken = -2
)
// TODO(brainman): maybe just add ReadAt method to bio.Reader instead of creating peBiobuf
// peBiobuf makes bio.Reader look like io.ReaderAt.
type peBiobuf bio.Reader
func (f *peBiobuf) ReadAt(p []byte, off int64) (int, error) {
ret := ((*bio.Reader)(f)).MustSeek(off, 0)
if ret < 0 {
return 0, errors.New("fail to seek")
}
n, err := f.Read(p)
if err != nil {
return 0, err
}
return n, nil
}
// makeUpdater creates a loader.SymbolBuilder if one hasn't been created previously.
// We use this to lazily make SymbolBuilders as we don't always need a builder, and creating them for all symbols might be an error.
func makeUpdater(l *loader.Loader, bld *loader.SymbolBuilder, s loader.Sym) *loader.SymbolBuilder {
if bld != nil {
return bld
}
bld = l.MakeSymbolUpdater(s)
return bld
}
// peImportSymsState tracks the set of DLL import symbols we've seen
// while reading host objects. We create a singleton instance of this
// type, which will persist across multiple host objects.
type peImportSymsState struct {
// Text and non-text sections read in by the host object loader.
secSyms []loader.Sym
// Loader and arch, for use in postprocessing.
l *loader.Loader
arch *sys.Arch
}
var importSymsState *peImportSymsState
func createImportSymsState(l *loader.Loader, arch *sys.Arch) {
if importSymsState != nil {
return
}
importSymsState = &peImportSymsState{
l: l,
arch: arch,
}
}
// peLoaderState holds various bits of useful state information needed
// while loading a single PE object file.
type peLoaderState struct {
l *loader.Loader
arch *sys.Arch
f *pe.File
pn string
sectsyms map[*pe.Section]loader.Sym
comdats map[uint16]int64 // key is section index, val is size
sectdata map[*pe.Section][]byte
localSymVersion int
}
// comdatDefinitions records the names of symbols for which we've
// previously seen a definition in COMDAT. Key is symbol name, value
// is symbol size (or -1 if we're using the "any" strategy).
var comdatDefinitions map[string]int64
// Symbols contains the symbols that can be loaded from a PE file.
type Symbols struct {
Textp []loader.Sym // text symbols
Resources []loader.Sym // .rsrc section or set of .rsrc$xx sections
PData loader.Sym
XData loader.Sym
}
// Load loads the PE file pn from input.
// Symbols from the object file are created via the loader 'l'.
func Load(l *loader.Loader, arch *sys.Arch, localSymVersion int, input *bio.Reader, pkg string, length int64, pn string) (*Symbols, error) {
state := &peLoaderState{
l: l,
arch: arch,
sectsyms: make(map[*pe.Section]loader.Sym),
sectdata: make(map[*pe.Section][]byte),
localSymVersion: localSymVersion,
pn: pn,
}
createImportSymsState(state.l, state.arch)
if comdatDefinitions == nil {
comdatDefinitions = make(map[string]int64)
}
// Some input files are archives containing multiple of
// object files, and pe.NewFile seeks to the start of
// input file and get confused. Create section reader
// to stop pe.NewFile looking before current position.
sr := io.NewSectionReader((*peBiobuf)(input), input.Offset(), 1<<63-1)
// TODO: replace pe.NewFile with pe.Load (grep for "add Load function" in debug/pe for details)
f, err := pe.NewFile(sr)
if err != nil {
return nil, err
}
defer f.Close()
state.f = f
var ls Symbols
// TODO return error if found .cormeta
// create symbols for mapped sections
for _, sect := range f.Sections {
if sect.Characteristics&pe.IMAGE_SCN_MEM_DISCARDABLE != 0 {
continue
}
if sect.Characteristics&(pe.IMAGE_SCN_CNT_CODE|pe.IMAGE_SCN_CNT_INITIALIZED_DATA|pe.IMAGE_SCN_CNT_UNINITIALIZED_DATA) == 0 {
// This has been seen for .idata sections, which we
// want to ignore. See issues 5106 and 5273.
continue
}
name := fmt.Sprintf("%s(%s)", pkg, sect.Name)
s := state.l.LookupOrCreateCgoExport(name, localSymVersion)
bld := l.MakeSymbolUpdater(s)
switch sect.Characteristics & (pe.IMAGE_SCN_CNT_UNINITIALIZED_DATA | pe.IMAGE_SCN_CNT_INITIALIZED_DATA | pe.IMAGE_SCN_MEM_READ | pe.IMAGE_SCN_MEM_WRITE | pe.IMAGE_SCN_CNT_CODE | pe.IMAGE_SCN_MEM_EXECUTE) {
case pe.IMAGE_SCN_CNT_INITIALIZED_DATA | pe.IMAGE_SCN_MEM_READ: //.rdata
if issehsect(arch, sect) {
bld.SetType(sym.SSEHSECT)
bld.SetAlign(4)
} else {
bld.SetType(sym.SRODATA)
}
case pe.IMAGE_SCN_CNT_UNINITIALIZED_DATA | pe.IMAGE_SCN_MEM_READ | pe.IMAGE_SCN_MEM_WRITE: //.bss
bld.SetType(sym.SNOPTRBSS)
case pe.IMAGE_SCN_CNT_INITIALIZED_DATA | pe.IMAGE_SCN_MEM_READ | pe.IMAGE_SCN_MEM_WRITE: //.data
bld.SetType(sym.SNOPTRDATA)
case pe.IMAGE_SCN_CNT_CODE | pe.IMAGE_SCN_MEM_EXECUTE | pe.IMAGE_SCN_MEM_READ: //.text
bld.SetType(sym.STEXT)
default:
return nil, fmt.Errorf("unexpected flags %#06x for PE section %s", sect.Characteristics, sect.Name)
}
if bld.Type() != sym.SNOPTRBSS {
data, err := sect.Data()
if err != nil {
return nil, err
}
state.sectdata[sect] = data
bld.SetData(data)
}
bld.SetSize(int64(sect.Size))
state.sectsyms[sect] = s
if sect.Name == ".rsrc" || strings.HasPrefix(sect.Name, ".rsrc$") {
ls.Resources = append(ls.Resources, s)
} else if bld.Type() == sym.SSEHSECT {
if sect.Name == ".pdata" {
ls.PData = s
} else if sect.Name == ".xdata" {
ls.XData = s
}
}
}
// Make a prepass over the symbols to collect info about COMDAT symbols.
if err := state.preprocessSymbols(); err != nil {
return nil, err
}
// load relocations
for _, rsect := range f.Sections {
if _, found := state.sectsyms[rsect]; !found {
continue
}
if rsect.NumberOfRelocations == 0 {
continue
}
if rsect.Characteristics&pe.IMAGE_SCN_MEM_DISCARDABLE != 0 {
continue
}
if rsect.Characteristics&(pe.IMAGE_SCN_CNT_CODE|pe.IMAGE_SCN_CNT_INITIALIZED_DATA|pe.IMAGE_SCN_CNT_UNINITIALIZED_DATA) == 0 {
// This has been seen for .idata sections, which we
// want to ignore. See issues 5106 and 5273.
continue
}
splitResources := strings.HasPrefix(rsect.Name, ".rsrc$")
issehsect := issehsect(arch, rsect)
sb := l.MakeSymbolUpdater(state.sectsyms[rsect])
for j, r := range rsect.Relocs {
if int(r.SymbolTableIndex) >= len(f.COFFSymbols) {
return nil, fmt.Errorf("relocation number %d symbol index idx=%d cannot be large then number of symbols %d", j, r.SymbolTableIndex, len(f.COFFSymbols))
}
pesym := &f.COFFSymbols[r.SymbolTableIndex]
_, gosym, err := state.readpesym(pesym)
if err != nil {
return nil, err
}
if gosym == 0 {
name, err := pesym.FullName(f.StringTable)
if err != nil {
name = string(pesym.Name[:])
}
return nil, fmt.Errorf("reloc of invalid sym %s idx=%d type=%d", name, r.SymbolTableIndex, pesym.Type)
}
rSym := gosym
rSize := uint8(4)
rOff := int32(r.VirtualAddress)
var rAdd int64
var rType objabi.RelocType
switch arch.Family {
default:
return nil, fmt.Errorf("%s: unsupported arch %v", pn, arch.Family)
case sys.I386, sys.AMD64:
switch r.Type {
default:
return nil, fmt.Errorf("%s: %v: unknown relocation type %v", pn, state.sectsyms[rsect], r.Type)
case IMAGE_REL_I386_REL32, IMAGE_REL_AMD64_REL32,
IMAGE_REL_AMD64_ADDR32, // R_X86_64_PC32
IMAGE_REL_AMD64_ADDR32NB:
if r.Type == IMAGE_REL_AMD64_ADDR32NB {
rType = objabi.R_PEIMAGEOFF
} else {
rType = objabi.R_PCREL
}
rAdd = int64(int32(binary.LittleEndian.Uint32(state.sectdata[rsect][rOff:])))
case IMAGE_REL_I386_DIR32NB, IMAGE_REL_I386_DIR32:
if r.Type == IMAGE_REL_I386_DIR32NB {
rType = objabi.R_PEIMAGEOFF
} else {
rType = objabi.R_ADDR
}
// load addend from image
rAdd = int64(int32(binary.LittleEndian.Uint32(state.sectdata[rsect][rOff:])))
case IMAGE_REL_AMD64_ADDR64: // R_X86_64_64
rSize = 8
rType = objabi.R_ADDR
// load addend from image
rAdd = int64(binary.LittleEndian.Uint64(state.sectdata[rsect][rOff:]))
}
case sys.ARM:
switch r.Type {
default:
return nil, fmt.Errorf("%s: %v: unknown ARM relocation type %v", pn, state.sectsyms[rsect], r.Type)
case IMAGE_REL_ARM_SECREL:
rType = objabi.R_PCREL
rAdd = int64(int32(binary.LittleEndian.Uint32(state.sectdata[rsect][rOff:])))
case IMAGE_REL_ARM_ADDR32, IMAGE_REL_ARM_ADDR32NB:
if r.Type == IMAGE_REL_ARM_ADDR32NB {
rType = objabi.R_PEIMAGEOFF
} else {
rType = objabi.R_ADDR
}
rAdd = int64(int32(binary.LittleEndian.Uint32(state.sectdata[rsect][rOff:])))
case IMAGE_REL_ARM_BRANCH24:
rType = objabi.R_CALLARM
rAdd = int64(int32(binary.LittleEndian.Uint32(state.sectdata[rsect][rOff:])))
}
case sys.ARM64:
switch r.Type {
default:
return nil, fmt.Errorf("%s: %v: unknown ARM64 relocation type %v", pn, state.sectsyms[rsect], r.Type)
case IMAGE_REL_ARM64_ADDR32, IMAGE_REL_ARM64_ADDR32NB:
if r.Type == IMAGE_REL_ARM64_ADDR32NB {
rType = objabi.R_PEIMAGEOFF
} else {
rType = objabi.R_ADDR
}
rAdd = int64(int32(binary.LittleEndian.Uint32(state.sectdata[rsect][rOff:])))
}
}
// ld -r could generate multiple section symbols for the
// same section but with different values, we have to take
// that into account, or in the case of split resources,
// the section and its symbols are split into two sections.
if issect(pesym) || splitResources {
rAdd += int64(pesym.Value)
}
if issehsect {
// .pdata and .xdata sections can contain records
// associated to functions that won't be used in
// the final binary, in which case the relocation
// target symbol won't be reachable.
rType |= objabi.R_WEAK
}
rel, _ := sb.AddRel(rType)
rel.SetOff(rOff)
rel.SetSiz(rSize)
rel.SetSym(rSym)
rel.SetAdd(rAdd)
}
sb.SortRelocs()
}
// enter sub-symbols into symbol table.
for i, numaux := 0, 0; i < len(f.COFFSymbols); i += numaux + 1 {
pesym := &f.COFFSymbols[i]
numaux = int(pesym.NumberOfAuxSymbols)
name, err := pesym.FullName(f.StringTable)
if err != nil {
return nil, err
}
if name == "" {
continue
}
if issect(pesym) {
continue
}
if int(pesym.SectionNumber) > len(f.Sections) {
continue
}
if pesym.SectionNumber == IMAGE_SYM_DEBUG {
continue
}
if pesym.SectionNumber == IMAGE_SYM_ABSOLUTE && bytes.Equal(pesym.Name[:], []byte("@feat.00")) {
// The PE documentation says that, on x86 platforms, the absolute symbol named @feat.00
// is used to indicate that the COFF object supports SEH.
// Go doesn't support SEH on windows/386, so we can ignore this symbol.
// See https://learn.microsoft.com/en-us/windows/win32/debug/pe-format#the-sxdata-section
continue
}
var sect *pe.Section
if pesym.SectionNumber > 0 {
sect = f.Sections[pesym.SectionNumber-1]
if _, found := state.sectsyms[sect]; !found {
continue
}
}
bld, s, err := state.readpesym(pesym)
if err != nil {
return nil, err
}
if pesym.SectionNumber == 0 { // extern
if l.SymType(s) == sym.SXREF && pesym.Value > 0 { // global data
bld = makeUpdater(l, bld, s)
bld.SetType(sym.SNOPTRDATA)
bld.SetSize(int64(pesym.Value))
}
continue
} else if pesym.SectionNumber > 0 && int(pesym.SectionNumber) <= len(f.Sections) {
sect = f.Sections[pesym.SectionNumber-1]
if _, found := state.sectsyms[sect]; !found {
return nil, fmt.Errorf("%s: %v: missing sect.sym", pn, s)
}
} else {
return nil, fmt.Errorf("%s: %v: sectnum < 0!", pn, s)
}
if sect == nil {
return nil, nil
}
// Check for COMDAT symbol.
if sz, ok1 := state.comdats[uint16(pesym.SectionNumber-1)]; ok1 {
if psz, ok2 := comdatDefinitions[l.SymName(s)]; ok2 {
if sz == psz {
// OK to discard, we've seen an instance
// already.
continue
}
}
}
if l.OuterSym(s) != 0 {
if l.AttrDuplicateOK(s) {
continue
}
outerName := l.SymName(l.OuterSym(s))
sectName := l.SymName(state.sectsyms[sect])
return nil, fmt.Errorf("%s: duplicate symbol reference: %s in both %s and %s", pn, l.SymName(s), outerName, sectName)
}
bld = makeUpdater(l, bld, s)
sectsym := state.sectsyms[sect]
bld.SetType(l.SymType(sectsym))
l.AddInteriorSym(sectsym, s)
bld.SetValue(int64(pesym.Value))
bld.SetSize(4)
if l.SymType(sectsym).IsText() {
if bld.External() && !bld.DuplicateOK() {
return nil, fmt.Errorf("%s: duplicate symbol definition", l.SymName(s))
}
bld.SetExternal(true)
}
if sz, ok := state.comdats[uint16(pesym.SectionNumber-1)]; ok {
// This is a COMDAT definition. Record that we're picking
// this instance so that we can ignore future defs.
if _, ok := comdatDefinitions[l.SymName(s)]; ok {
return nil, fmt.Errorf("internal error: preexisting COMDAT definition for %q", name)
}
comdatDefinitions[l.SymName(s)] = sz
}
}
// Sort outer lists by address, adding to textp.
// This keeps textp in increasing address order.
for _, sect := range f.Sections {
s := state.sectsyms[sect]
if s == 0 {
continue
}
l.SortSub(s)
importSymsState.secSyms = append(importSymsState.secSyms, s)
if l.SymType(s).IsText() {
for ; s != 0; s = l.SubSym(s) {
if l.AttrOnList(s) {
return nil, fmt.Errorf("symbol %s listed multiple times", l.SymName(s))
}
l.SetAttrOnList(s, true)
ls.Textp = append(ls.Textp, s)
}
}
}
if ls.PData != 0 {
processSEH(l, arch, ls.PData, ls.XData)
}
return &ls, nil
}
// PostProcessImports works to resolve inconsistencies with DLL import
// symbols; it is needed when building with more "modern" C compilers
// with internal linkage.
//
// Background: DLL import symbols are data (SNOPTRDATA) symbols whose
// name is of the form "__imp_XXX", which contain a pointer/reference
// to symbol XXX. It's possible to have import symbols for both data
// symbols ("__imp__fmode") and text symbols ("__imp_CreateEventA").
// In some case import symbols are just references to some external
// thing, and in other cases we see actual definitions of import
// symbols when reading host objects.
//
// Previous versions of the linker would in most cases immediately
// "forward" import symbol references, e.g. treat a references to
// "__imp_XXX" a references to "XXX", however this doesn't work well
// with more modern compilers, where you can sometimes see import
// symbols that are defs (as opposed to external refs).
//
// The main actions taken below are to search for references to
// SDYNIMPORT symbols in host object text/data sections and flag the
// symbols for later fixup. When we see a reference to an import
// symbol __imp_XYZ where XYZ corresponds to some SDYNIMPORT symbol,
// we flag the symbol (via GOT setting) so that it can be redirected
// to XYZ later in windynrelocsym. When we see a direct reference to
// an SDYNIMPORT symbol XYZ, we also flag the symbol (via PLT setting)
// to indicated that the reference will need to be redirected to a
// stub.
func PostProcessImports() error {
ldr := importSymsState.l
arch := importSymsState.arch
keeprelocneeded := make(map[loader.Sym]loader.Sym)
for _, s := range importSymsState.secSyms {
isText := ldr.SymType(s).IsText()
relocs := ldr.Relocs(s)
for i := 0; i < relocs.Count(); i++ {
r := relocs.At(i)
rs := r.Sym()
if ldr.SymType(rs) == sym.SDYNIMPORT {
// Tag the symbol for later stub generation.
ldr.SetPlt(rs, CreateImportStubPltToken)
continue
}
isym, err := LookupBaseFromImport(rs, ldr, arch)
if err != nil {
return err
}
if isym == 0 {
continue
}
if ldr.SymType(isym) != sym.SDYNIMPORT {
continue
}
// For non-text symbols, forward the reference from __imp_X to
// X immediately.
if !isText {
r.SetSym(isym)
continue
}
// Flag this imp symbol to be processed later in windynrelocsym.
ldr.SetGot(rs, RedirectToDynImportGotToken)
// Consistency check: should be no PLT token here.
splt := ldr.SymPlt(rs)
if splt != -1 {
return fmt.Errorf("internal error: import symbol %q has invalid PLT setting %d", ldr.SymName(rs), splt)
}
// Flag for dummy relocation.
keeprelocneeded[rs] = isym
}
}
for k, v := range keeprelocneeded {
sb := ldr.MakeSymbolUpdater(k)
r, _ := sb.AddRel(objabi.R_KEEP)
r.SetSym(v)
}
importSymsState = nil
return nil
}
func issehsect(arch *sys.Arch, s *pe.Section) bool {
return arch.Family == sys.AMD64 && (s.Name == ".pdata" || s.Name == ".xdata")
}
func issect(s *pe.COFFSymbol) bool {
return s.StorageClass == IMAGE_SYM_CLASS_STATIC && s.Type == 0 && s.Name[0] == '.'
}
func (state *peLoaderState) readpesym(pesym *pe.COFFSymbol) (*loader.SymbolBuilder, loader.Sym, error) {
symname, err := pesym.FullName(state.f.StringTable)
if err != nil {
return nil, 0, err
}
var name string
if issect(pesym) {
name = state.l.SymName(state.sectsyms[state.f.Sections[pesym.SectionNumber-1]])
} else {
name = symname
// A note on the "_main" exclusion below: the main routine
// defined by the Go runtime is named "_main", not "main", so
// when reading references to _main from a host object we want
// to avoid rewriting "_main" to "main" in this specific
// instance. See #issuecomment-1143698749 on #35006 for more
// details on this problem.
if state.arch.Family == sys.I386 && name[0] == '_' && name != "_main" && !strings.HasPrefix(name, "__imp_") {
name = name[1:] // _Name => Name
}
}
// remove last @XXX
if i := strings.LastIndex(name, "@"); i >= 0 {
name = name[:i]
}
var s loader.Sym
var bld *loader.SymbolBuilder
// Microsoft's PE documentation is contradictory. It says that the symbol's complex type
// is stored in the pesym.Type most significant byte, but MSVC, LLVM, and mingw store it
// in the 4 high bits of the less significant byte.
switch uint8(pesym.Type&0xf0) >> 4 {
default:
return nil, 0, fmt.Errorf("%s: invalid symbol type %d", symname, pesym.Type)
case IMAGE_SYM_DTYPE_FUNCTION, IMAGE_SYM_DTYPE_NULL:
switch pesym.StorageClass {
case IMAGE_SYM_CLASS_EXTERNAL: //global
s = state.l.LookupOrCreateCgoExport(name, 0)
case IMAGE_SYM_CLASS_NULL, IMAGE_SYM_CLASS_STATIC, IMAGE_SYM_CLASS_LABEL:
s = state.l.LookupOrCreateCgoExport(name, state.localSymVersion)
bld = makeUpdater(state.l, bld, s)
bld.SetDuplicateOK(true)
default:
return nil, 0, fmt.Errorf("%s: invalid symbol binding %d", symname, pesym.StorageClass)
}
}
if s != 0 && state.l.SymType(s) == 0 && (pesym.StorageClass != IMAGE_SYM_CLASS_STATIC || pesym.Value != 0) {
bld = makeUpdater(state.l, bld, s)
bld.SetType(sym.SXREF)
}
return bld, s, nil
}
// preprocessSymbols walks the COFF symbols for the PE file we're
// reading and looks for cases where we have both a symbol definition
// for "XXX" and an "__imp_XXX" symbol, recording these cases in a map
// in the state struct. This information will be used in readpesym()
// above to give such symbols special treatment. This function also
// gathers information about COMDAT sections/symbols for later use
// in readpesym().
func (state *peLoaderState) preprocessSymbols() error {
// Locate comdat sections.
state.comdats = make(map[uint16]int64)
for i, s := range state.f.Sections {
if s.Characteristics&uint32(pe.IMAGE_SCN_LNK_COMDAT) != 0 {
state.comdats[uint16(i)] = int64(s.Size)
}
}
// Examine symbol defs.
for i, numaux := 0, 0; i < len(state.f.COFFSymbols); i += numaux + 1 {
pesym := &state.f.COFFSymbols[i]
numaux = int(pesym.NumberOfAuxSymbols)
if pesym.SectionNumber == 0 { // extern
continue
}
symname, err := pesym.FullName(state.f.StringTable)
if err != nil {
return err
}
if _, isc := state.comdats[uint16(pesym.SectionNumber-1)]; !isc {
continue
}
if pesym.StorageClass != uint8(IMAGE_SYM_CLASS_STATIC) {
continue
}
// This symbol corresponds to a COMDAT section. Read the
// aux data for it.
auxsymp, err := state.f.COFFSymbolReadSectionDefAux(i)
if err != nil {
return fmt.Errorf("unable to read aux info for section def symbol %d %s: pe.COFFSymbolReadComdatInfo returns %v", i, symname, err)
}
if auxsymp.Selection == pe.IMAGE_COMDAT_SELECT_SAME_SIZE {
// This is supported.
} else if auxsymp.Selection == pe.IMAGE_COMDAT_SELECT_ANY {
// Also supported.
state.comdats[uint16(pesym.SectionNumber-1)] = int64(-1)
} else {
// We don't support any of the other strategies at the
// moment. I suspect that we may need to also support
// "associative", we'll see.
return fmt.Errorf("internal error: unsupported COMDAT selection strategy found in path=%s sec=%d strategy=%d idx=%d, please file a bug", state.pn, auxsymp.SecNum, auxsymp.Selection, i)
}
}
return nil
}
// LookupBaseFromImport examines the symbol "s" to see if it
// corresponds to an import symbol (name of the form "__imp_XYZ") and
// if so, it looks up the underlying target of the import symbol and
// returns it. An error is returned if the symbol is of the form
// "__imp_XYZ" but no XYZ can be found.
func LookupBaseFromImport(s loader.Sym, ldr *loader.Loader, arch *sys.Arch) (loader.Sym, error) {
sname := ldr.SymName(s)
if !strings.HasPrefix(sname, "__imp_") {
return 0, nil
}
basename := sname[len("__imp_"):]
if arch.Family == sys.I386 && basename[0] == '_' {
basename = basename[1:] // _Name => Name
}
isym := ldr.Lookup(basename, 0)
if isym == 0 {
return 0, fmt.Errorf("internal error: import symbol %q with no underlying sym", sname)
}
return isym, nil
}