|
| 1 | +import torch |
| 2 | +import torchvision |
| 3 | +import torch.optim as optim |
| 4 | +from torchvision.transforms import transforms |
| 5 | +from torchvision.datasets import MNIST |
| 6 | +from torch.utils.data import DataLoader |
| 7 | +from model import Discriminator, Faker |
| 8 | +from torch.utils.tensorboard import SummaryWriter |
| 9 | + |
| 10 | + |
| 11 | +# ~~~~~~~~~~~~~~~~~~~ hyper parameters ~~~~~~~~~~~~~~~~~~~ # |
| 12 | +EPOCHS = 20 |
| 13 | +CHANNELS = 1 |
| 14 | +H, W = 64, 64 |
| 15 | +IMG_SIZE = CHANNELS * H * W |
| 16 | +lr = 2e-4 |
| 17 | +work_device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
| 18 | +FEATURE_D = 128 |
| 19 | +Z_DIM = 100 |
| 20 | +GEN_TRAIN_STEPS = 5 |
| 21 | +BATCH_SIZE = 128 |
| 22 | +# ~~~~~~~~~~~~~~~~~~~ loading the dataset ~~~~~~~~~~~~~~~~~~~ # |
| 23 | + |
| 24 | +trans = transforms.Compose( |
| 25 | + [transforms.Resize((H, W)), transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))]) |
| 26 | + |
| 27 | +MNIST_data = MNIST('./data', True, transform=trans, download=True) |
| 28 | + |
| 29 | +loader = DataLoader(MNIST_data, BATCH_SIZE, True, num_workers=1) |
| 30 | + |
| 31 | +# ~~~~~~~~~~~~~~~~~~~ creating tensorboard variables ~~~~~~~~~~~~~~~~~~~ # |
| 32 | + |
| 33 | +writer_fake = SummaryWriter("logs/fake") |
| 34 | +writer_real = SummaryWriter("logs/real") |
| 35 | + |
| 36 | +# ~~~~~~~~~~~~~~~~~~~ loading the model ~~~~~~~~~~~~~~~~~~~ # |
| 37 | + |
| 38 | +disc = Discriminator(img_channels=CHANNELS, |
| 39 | + feature_d=FEATURE_D).to(work_device) |
| 40 | +gen = Faker(Z_DIM, CHANNELS, FEATURE_D).to(work_device) |
| 41 | + |
| 42 | +# ~~~~~~~~~~~~~~~~~~~ create optimizer and loss ~~~~~~~~~~~~~~~~~~~ # |
| 43 | + |
| 44 | +disc_optim = optim.Adam(disc.parameters(), lr, (0.5, 0.999)) |
| 45 | +gen_optim = optim.Adam(gen.parameters(), lr, (0.5, 0.999)) |
| 46 | +criterion = torch.nn.BCELoss() |
| 47 | + |
| 48 | +# ~~~~~~~~~~~~~~~~~~~ training loop ~~~~~~~~~~~~~~~~~~~ # |
| 49 | + |
| 50 | +for epoch in range(EPOCHS): |
| 51 | + |
| 52 | + for batch_idx, (real, _) in enumerate(loader): |
| 53 | + disc.train() |
| 54 | + gen.train() |
| 55 | + real = real.to(work_device) |
| 56 | + fixed_noise = torch.rand(real.shape[0], Z_DIM, H, W).to(work_device) |
| 57 | + # ~~~~~~~~~~~~~~~~~~~ discriminator loop ~~~~~~~~~~~~~~~~~~~ # |
| 58 | + |
| 59 | + fake = gen(fixed_noise) # dim of (N,1,28,28) |
| 60 | + # ~~~~~~~~~~~~~~~~~~~ forward ~~~~~~~~~~~~~~~~~~~ # |
| 61 | + real_predict = disc(real).view(-1) # make it one dimensional array |
| 62 | + fake_predict = disc(fake).view(-1) # make it one dimensional array |
| 63 | + |
| 64 | + labels = torch.cat([torch.ones_like(real_predict), |
| 65 | + torch.zeros_like(fake_predict)], dim=0) |
| 66 | + |
| 67 | + # ~~~~~~~~~~~~~~~~~~~ loss ~~~~~~~~~~~~~~~~~~~ # |
| 68 | + D_loss = criterion( |
| 69 | + torch.cat([real_predict, fake_predict], dim=0), labels) |
| 70 | + |
| 71 | + # ~~~~~~~~~~~~~~~~~~~ backward ~~~~~~~~~~~~~~~~~~~ # |
| 72 | + disc.zero_grad() |
| 73 | + D_loss.backward() |
| 74 | + disc_optim.step() |
| 75 | + |
| 76 | + # ~~~~~~~~~~~~~~~~~~~ generator loop ~~~~~~~~~~~~~~~~~~~ # |
| 77 | + for _ in range(GEN_TRAIN_STEPS): |
| 78 | + # ~~~~~~~~~~~~~~~~~~~ forward ~~~~~~~~~~~~~~~~~~~ # |
| 79 | + fake = gen(fixed_noise).view(-1, CHANNELS, |
| 80 | + H, W) # dim of (N,1,32,32) |
| 81 | + # ~~~~~~~~~~~~~~~~~~~ forward ~~~~~~~~~~~~~~~~~~~ # |
| 82 | + fake_predict = disc(fake).view(-1) # make it one dimensional array |
| 83 | + # ~~~~~~~~~~~~~~~~~~~ loss ~~~~~~~~~~~~~~~~~~~ # |
| 84 | + |
| 85 | + G_loss = criterion(fake_predict, torch.ones_like(fake_predict)) |
| 86 | + # ~~~~~~~~~~~~~~~~~~~ backward ~~~~~~~~~~~~~~~~~~~ # |
| 87 | + gen.zero_grad() |
| 88 | + G_loss.backward() |
| 89 | + gen_optim.step() |
| 90 | + |
| 91 | + # ~~~~~~~~~~~~~~~~~~~ loading the tensorboard ~~~~~~~~~~~~~~~~~~~ # |
| 92 | + |
| 93 | + if batch_idx == 0: |
| 94 | + print( |
| 95 | + f"Epoch [{epoch}/{EPOCHS}] Batch {batch_idx}/{len(loader)} \ |
| 96 | + Loss D: {D_loss:.4f}, loss G: {G_loss:.4f}" |
| 97 | + ) |
| 98 | + |
| 99 | + with torch.no_grad(): |
| 100 | + disc.eval() |
| 101 | + gen.eval() |
| 102 | + fake = gen(fixed_noise).reshape(-1, CHANNELS, H, W) |
| 103 | + data = real.reshape(-1, CHANNELS, H, W) |
| 104 | + if BATCH_SIZE > 32: |
| 105 | + fake = fake[:32] |
| 106 | + data = data[:32] |
| 107 | + img_grid_fake = torchvision.utils.make_grid( |
| 108 | + fake, normalize=True) |
| 109 | + img_grid_real = torchvision.utils.make_grid( |
| 110 | + data, normalize=True) |
| 111 | + |
| 112 | + writer_fake.add_image( |
| 113 | + "Mnist Fake Images", img_grid_fake, global_step=epoch |
| 114 | + ) |
| 115 | + writer_real.add_image( |
| 116 | + "Mnist Real Images", img_grid_real, global_step=epoch |
| 117 | + ) |
0 commit comments