Skip to content

Commit cc09334

Browse files
committed
Pushing the docs to dev/ for branch: master, commit 6c5f285a32271da0580410927df4cc1cc53f94ad
1 parent 7a645c6 commit cc09334

File tree

1,053 files changed

+3278
-3278
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

1,053 files changed

+3278
-3278
lines changed
6 Bytes
Binary file not shown.
6 Bytes
Binary file not shown.

dev/_downloads/plot_iris_logistic.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -26,7 +26,7 @@
2626
},
2727
"outputs": [],
2828
"source": [
29-
"print(__doc__)\n\n# Code source: Ga\u00ebl Varoquaux\n# Modified for documentation by Jaques Grobler\n# License: BSD 3 clause\n\nimport numpy as np\nimport matplotlib.pyplot as plt\nfrom sklearn.linear_model import LogisticRegression\nfrom sklearn import datasets\n\n# import some data to play with\niris = datasets.load_iris()\nX = iris.data[:, :2] # we only take the first two features.\nY = iris.target\n\nlogreg = LogisticRegression(C=1e5, solver='lbfgs', multi_class='multinomial')\n\n# we create an instance of Neighbours Classifier and fit the data.\nlogreg.fit(X, Y)\n\n# Plot the decision boundary. For that, we will assign a color to each\n# point in the mesh [x_min, x_max]x[y_min, y_max].\nx_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5\ny_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5\nh = .02 # step size in the mesh\nxx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))\nZ = logreg.predict(np.c_[xx.ravel(), yy.ravel()])\n\n# Put the result into a color plot\nZ = Z.reshape(xx.shape)\nplt.figure(1, figsize=(4, 3))\nplt.pcolormesh(xx, yy, Z, cmap=plt.cm.Paired)\n\n# Plot also the training points\nplt.scatter(X[:, 0], X[:, 1], c=Y, edgecolors='k', cmap=plt.cm.Paired)\nplt.xlabel('Sepal length')\nplt.ylabel('Sepal width')\n\nplt.xlim(xx.min(), xx.max())\nplt.ylim(yy.min(), yy.max())\nplt.xticks(())\nplt.yticks(())\n\nplt.show()"
29+
"print(__doc__)\n\n# Code source: Ga\u00ebl Varoquaux\n# Modified for documentation by Jaques Grobler\n# License: BSD 3 clause\n\nimport numpy as np\nimport matplotlib.pyplot as plt\nfrom sklearn.linear_model import LogisticRegression\nfrom sklearn import datasets\n\n# import some data to play with\niris = datasets.load_iris()\nX = iris.data[:, :2] # we only take the first two features.\nY = iris.target\n\nlogreg = LogisticRegression(C=1e5, solver='lbfgs', multi_class='multinomial')\n\n# Create an instance of Logistic Regression Classifier and fit the data.\nlogreg.fit(X, Y)\n\n# Plot the decision boundary. For that, we will assign a color to each\n# point in the mesh [x_min, x_max]x[y_min, y_max].\nx_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5\ny_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5\nh = .02 # step size in the mesh\nxx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))\nZ = logreg.predict(np.c_[xx.ravel(), yy.ravel()])\n\n# Put the result into a color plot\nZ = Z.reshape(xx.shape)\nplt.figure(1, figsize=(4, 3))\nplt.pcolormesh(xx, yy, Z, cmap=plt.cm.Paired)\n\n# Plot also the training points\nplt.scatter(X[:, 0], X[:, 1], c=Y, edgecolors='k', cmap=plt.cm.Paired)\nplt.xlabel('Sepal length')\nplt.ylabel('Sepal width')\n\nplt.xlim(xx.min(), xx.max())\nplt.ylim(yy.min(), yy.max())\nplt.xticks(())\nplt.yticks(())\n\nplt.show()"
3030
]
3131
}
3232
],

dev/_downloads/plot_iris_logistic.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -30,7 +30,7 @@
3030

3131
logreg = LogisticRegression(C=1e5, solver='lbfgs', multi_class='multinomial')
3232

33-
# we create an instance of Neighbours Classifier and fit the data.
33+
# Create an instance of Logistic Regression Classifier and fit the data.
3434
logreg.fit(X, Y)
3535

3636
# Plot the decision boundary. For that, we will assign a color to each

dev/_downloads/scikit-learn-docs.pdf

-815 Bytes
Binary file not shown.

dev/_images/iris.png

0 Bytes
247 Bytes
-205 Bytes
-205 Bytes
-44 Bytes
-44 Bytes
226 Bytes
465 Bytes
251 Bytes
129 Bytes
-82 Bytes
20 Bytes
20 Bytes
-27 Bytes
-27 Bytes
-36 Bytes
-36 Bytes
-13 Bytes
-13 Bytes
150 Bytes
150 Bytes
-183 Bytes
-183 Bytes
109 Bytes
109 Bytes
-149 Bytes
-149 Bytes
-9 Bytes
-95 Bytes
134 Bytes
134 Bytes
-220 Bytes
-687 Bytes
97 Bytes
97 Bytes
-160 Bytes
39 Bytes

dev/_sources/auto_examples/applications/plot_face_recognition.rst.txt

Lines changed: 16 additions & 16 deletions

dev/_sources/auto_examples/applications/plot_model_complexity_influence.rst.txt

Lines changed: 15 additions & 15 deletions

0 commit comments

Comments
 (0)