diff --git a/README.md b/README.md index d15d55e..e20c783 100644 --- a/README.md +++ b/README.md @@ -1,5 +1,11 @@ # Pinecone + OpenAI Scala Client - Demo/Seed Project -[![version](https://img.shields.io/badge/version-0.0.1-green.svg)](https://cequence.io) [![License](https://img.shields.io/badge/License-MIT-lightgrey.svg)](https://opensource.org/licenses/MIT) [![Twitter Follow](https://img.shields.io/twitter/follow/0xbnd?style=social)](https://twitter.com/0xbnd) +[![version](https://img.shields.io/badge/version-0.1.0-green.svg)](https://cequence.io) [![License](https://img.shields.io/badge/License-MIT-lightgrey.svg)](https://opensource.org/licenses/MIT) [![Twitter Follow](https://img.shields.io/twitter/follow/0xbnd?style=social)](https://twitter.com/0xbnd) + +--- + +### This project is archived! It has been moved to the main Pinecone Scala Client repository as a module [openai-examples](https://github.com/cequence-io/pinecone-scala/tree/master/openai-examples) + +--- This is a ready-to-fork, example/demo project demonstrating how to use [Pinecone](https://pinecone.io) vector database with [OpenAI](https://openai.com) embeddings in Scala using [Pinecone Scala Client](https://github.com/cequence-io/pinecone-scala) and [OpenAI Scala Client](https://github.com/cequence-io/openai-scala-client). diff --git a/build.sbt b/build.sbt index 43864c8..2a0d09e 100644 --- a/build.sbt +++ b/build.sbt @@ -2,7 +2,7 @@ organization := "io.cequence" name := "pinecone-openai-scala-demo" -version := "0.0.1" +version := "0.1.0" // Supported Scala versions val scala212 = "2.12.15" diff --git a/src/main/scala/io/cequence/pineconeopenai/demo/PineconeOpenAIDemo.scala b/src/main/scala/io/cequence/pineconeopenai/demo/PineconeOpenAIDemo.scala index 9ebd36d..7eb55c7 100644 --- a/src/main/scala/io/cequence/pineconeopenai/demo/PineconeOpenAIDemo.scala +++ b/src/main/scala/io/cequence/pineconeopenai/demo/PineconeOpenAIDemo.scala @@ -74,7 +74,7 @@ object PineconeOpenAIDemo extends PineconeOpenAIDemoApp { // create a service for a given index name pineconeVectorService <- createPineconeVectorService(indexName) - // take the first 1000 entries and extract text, result is an iterator + // take the first 1000 entries and extract the text. the result is an iterator trecTextsIterator = scala.io.Source.fromFile("src/main/resources/trec-train.json") .getLines() .take(1000)