|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "<h2 align='center'>NLP Tutorial: Named Entity Recognition (NER)</h2>" |
| 8 | + ] |
| 9 | + }, |
| 10 | + { |
| 11 | + "cell_type": "code", |
| 12 | + "execution_count": 1, |
| 13 | + "metadata": {}, |
| 14 | + "outputs": [], |
| 15 | + "source": [ |
| 16 | + "import spacy" |
| 17 | + ] |
| 18 | + }, |
| 19 | + { |
| 20 | + "cell_type": "code", |
| 21 | + "execution_count": 3, |
| 22 | + "metadata": {}, |
| 23 | + "outputs": [ |
| 24 | + { |
| 25 | + "data": { |
| 26 | + "text/plain": [ |
| 27 | + "['tok2vec', 'tagger', 'parser', 'attribute_ruler', 'lemmatizer', 'ner']" |
| 28 | + ] |
| 29 | + }, |
| 30 | + "execution_count": 3, |
| 31 | + "metadata": {}, |
| 32 | + "output_type": "execute_result" |
| 33 | + } |
| 34 | + ], |
| 35 | + "source": [ |
| 36 | + "nlp = spacy.load(\"en_core_web_sm\")\n", |
| 37 | + "nlp.pipe_names" |
| 38 | + ] |
| 39 | + }, |
| 40 | + { |
| 41 | + "cell_type": "code", |
| 42 | + "execution_count": 13, |
| 43 | + "metadata": {}, |
| 44 | + "outputs": [ |
| 45 | + { |
| 46 | + "name": "stdout", |
| 47 | + "output_type": "stream", |
| 48 | + "text": [ |
| 49 | + "Tesla Inc | ORG | Companies, agencies, institutions, etc.\n", |
| 50 | + "$45 billion | MONEY | Monetary values, including unit\n" |
| 51 | + ] |
| 52 | + } |
| 53 | + ], |
| 54 | + "source": [ |
| 55 | + "doc = nlp(\"Tesla Inc is going to acquire twitter for $45 billion\")\n", |
| 56 | + "for ent in doc.ents:\n", |
| 57 | + " print(ent.text, \" | \", ent.label_, \" | \", spacy.explain(ent.label_))" |
| 58 | + ] |
| 59 | + }, |
| 60 | + { |
| 61 | + "cell_type": "code", |
| 62 | + "execution_count": 11, |
| 63 | + "metadata": { |
| 64 | + "scrolled": true |
| 65 | + }, |
| 66 | + "outputs": [ |
| 67 | + { |
| 68 | + "data": { |
| 69 | + "text/html": [ |
| 70 | + "<span class=\"tex2jax_ignore\"><div class=\"entities\" style=\"line-height: 2.5; direction: ltr\">\n", |
| 71 | + "<mark class=\"entity\" style=\"background: #7aecec; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n", |
| 72 | + " Tesla Inc\n", |
| 73 | + " <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">ORG</span>\n", |
| 74 | + "</mark>\n", |
| 75 | + " is going to acquire twitter for \n", |
| 76 | + "<mark class=\"entity\" style=\"background: #e4e7d2; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n", |
| 77 | + " $45 billion\n", |
| 78 | + " <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">MONEY</span>\n", |
| 79 | + "</mark>\n", |
| 80 | + "</div></span>" |
| 81 | + ], |
| 82 | + "text/plain": [ |
| 83 | + "<IPython.core.display.HTML object>" |
| 84 | + ] |
| 85 | + }, |
| 86 | + "metadata": {}, |
| 87 | + "output_type": "display_data" |
| 88 | + } |
| 89 | + ], |
| 90 | + "source": [ |
| 91 | + "from spacy import displacy\n", |
| 92 | + "\n", |
| 93 | + "displacy.render(doc, style=\"ent\")" |
| 94 | + ] |
| 95 | + }, |
| 96 | + { |
| 97 | + "cell_type": "markdown", |
| 98 | + "metadata": {}, |
| 99 | + "source": [ |
| 100 | + "<h3>List down all the entities</h3>" |
| 101 | + ] |
| 102 | + }, |
| 103 | + { |
| 104 | + "cell_type": "code", |
| 105 | + "execution_count": 14, |
| 106 | + "metadata": { |
| 107 | + "scrolled": true |
| 108 | + }, |
| 109 | + "outputs": [ |
| 110 | + { |
| 111 | + "data": { |
| 112 | + "text/plain": [ |
| 113 | + "['CARDINAL',\n", |
| 114 | + " 'DATE',\n", |
| 115 | + " 'EVENT',\n", |
| 116 | + " 'FAC',\n", |
| 117 | + " 'GPE',\n", |
| 118 | + " 'LANGUAGE',\n", |
| 119 | + " 'LAW',\n", |
| 120 | + " 'LOC',\n", |
| 121 | + " 'MONEY',\n", |
| 122 | + " 'NORP',\n", |
| 123 | + " 'ORDINAL',\n", |
| 124 | + " 'ORG',\n", |
| 125 | + " 'PERCENT',\n", |
| 126 | + " 'PERSON',\n", |
| 127 | + " 'PRODUCT',\n", |
| 128 | + " 'QUANTITY',\n", |
| 129 | + " 'TIME',\n", |
| 130 | + " 'WORK_OF_ART']" |
| 131 | + ] |
| 132 | + }, |
| 133 | + "execution_count": 14, |
| 134 | + "metadata": {}, |
| 135 | + "output_type": "execute_result" |
| 136 | + } |
| 137 | + ], |
| 138 | + "source": [ |
| 139 | + "nlp.pipe_labels['ner']" |
| 140 | + ] |
| 141 | + }, |
| 142 | + { |
| 143 | + "cell_type": "markdown", |
| 144 | + "metadata": {}, |
| 145 | + "source": [ |
| 146 | + "List of entities are also documented on this page: https://spacy.io/models/en" |
| 147 | + ] |
| 148 | + }, |
| 149 | + { |
| 150 | + "cell_type": "code", |
| 151 | + "execution_count": 34, |
| 152 | + "metadata": {}, |
| 153 | + "outputs": [ |
| 154 | + { |
| 155 | + "name": "stdout", |
| 156 | + "output_type": "stream", |
| 157 | + "text": [ |
| 158 | + "Michael Bloomberg | PERSON | People, including fictional\n", |
| 159 | + "Bloomberg | GPE | Countries, cities, states\n", |
| 160 | + "1982 | DATE | Absolute or relative dates or periods\n" |
| 161 | + ] |
| 162 | + } |
| 163 | + ], |
| 164 | + "source": [ |
| 165 | + "doc = nlp(\"Michael Bloomberg founded Bloomberg in 1982\")\n", |
| 166 | + "for ent in doc.ents:\n", |
| 167 | + " print(ent.text, \"|\", ent.label_, \"|\", spacy.explain(ent.label_))" |
| 168 | + ] |
| 169 | + }, |
| 170 | + { |
| 171 | + "cell_type": "markdown", |
| 172 | + "metadata": {}, |
| 173 | + "source": [ |
| 174 | + "Above it made a mistake in identifying Bloomberg the company. Let's try hugging face for this now.\n", |
| 175 | + "\n", |
| 176 | + "https://huggingface.co/dslim/bert-base-NER?text=Michael+Bloomberg+founded+Bloomberg+in+1982\n", |
| 177 | + "\n", |
| 178 | + "Here also go through 3 sample examples for NER " |
| 179 | + ] |
| 180 | + }, |
| 181 | + { |
| 182 | + "cell_type": "code", |
| 183 | + "execution_count": 36, |
| 184 | + "metadata": {}, |
| 185 | + "outputs": [ |
| 186 | + { |
| 187 | + "name": "stdout", |
| 188 | + "output_type": "stream", |
| 189 | + "text": [ |
| 190 | + "Tesla Inc | ORG | 0 | 9\n", |
| 191 | + "Twitter Inc | ORG | 30 | 41\n", |
| 192 | + "$45 billion | MONEY | 46 | 57\n" |
| 193 | + ] |
| 194 | + } |
| 195 | + ], |
| 196 | + "source": [ |
| 197 | + "doc = nlp(\"Tesla Inc is going to acquire Twitter Inc for $45 billion\")\n", |
| 198 | + "for ent in doc.ents:\n", |
| 199 | + " print(ent.text, \" | \", ent.label_, \" | \", ent.start_char, \"|\", ent.end_char)" |
| 200 | + ] |
| 201 | + }, |
| 202 | + { |
| 203 | + "cell_type": "markdown", |
| 204 | + "metadata": {}, |
| 205 | + "source": [ |
| 206 | + "<h3>Setting custom entities</h3>" |
| 207 | + ] |
| 208 | + }, |
| 209 | + { |
| 210 | + "cell_type": "code", |
| 211 | + "execution_count": 43, |
| 212 | + "metadata": {}, |
| 213 | + "outputs": [ |
| 214 | + { |
| 215 | + "name": "stdout", |
| 216 | + "output_type": "stream", |
| 217 | + "text": [ |
| 218 | + "Twitter | PRODUCT\n", |
| 219 | + "$45 billion | MONEY\n" |
| 220 | + ] |
| 221 | + } |
| 222 | + ], |
| 223 | + "source": [ |
| 224 | + "doc = nlp(\"Tesla is going to acquire Twitter for $45 billion\")\n", |
| 225 | + "for ent in doc.ents:\n", |
| 226 | + " print(ent.text, \" | \", ent.label_)" |
| 227 | + ] |
| 228 | + }, |
| 229 | + { |
| 230 | + "cell_type": "code", |
| 231 | + "execution_count": 44, |
| 232 | + "metadata": {}, |
| 233 | + "outputs": [ |
| 234 | + { |
| 235 | + "data": { |
| 236 | + "text/plain": [ |
| 237 | + "going to acquire" |
| 238 | + ] |
| 239 | + }, |
| 240 | + "execution_count": 44, |
| 241 | + "metadata": {}, |
| 242 | + "output_type": "execute_result" |
| 243 | + } |
| 244 | + ], |
| 245 | + "source": [ |
| 246 | + "s = doc[2:5]\n", |
| 247 | + "s" |
| 248 | + ] |
| 249 | + }, |
| 250 | + { |
| 251 | + "cell_type": "code", |
| 252 | + "execution_count": 45, |
| 253 | + "metadata": {}, |
| 254 | + "outputs": [ |
| 255 | + { |
| 256 | + "data": { |
| 257 | + "text/plain": [ |
| 258 | + "spacy.tokens.span.Span" |
| 259 | + ] |
| 260 | + }, |
| 261 | + "execution_count": 45, |
| 262 | + "metadata": {}, |
| 263 | + "output_type": "execute_result" |
| 264 | + } |
| 265 | + ], |
| 266 | + "source": [ |
| 267 | + "type(s)" |
| 268 | + ] |
| 269 | + }, |
| 270 | + { |
| 271 | + "cell_type": "code", |
| 272 | + "execution_count": 46, |
| 273 | + "metadata": {}, |
| 274 | + "outputs": [], |
| 275 | + "source": [ |
| 276 | + "from spacy.tokens import Span\n", |
| 277 | + "\n", |
| 278 | + "s1 = Span(doc, 0, 1, label=\"ORG\")\n", |
| 279 | + "s2 = Span(doc, 5, 6, label=\"ORG\")\n", |
| 280 | + "\n", |
| 281 | + "doc.set_ents([s1, s2], default=\"unmodified\")" |
| 282 | + ] |
| 283 | + }, |
| 284 | + { |
| 285 | + "cell_type": "code", |
| 286 | + "execution_count": 47, |
| 287 | + "metadata": { |
| 288 | + "scrolled": true |
| 289 | + }, |
| 290 | + "outputs": [ |
| 291 | + { |
| 292 | + "name": "stdout", |
| 293 | + "output_type": "stream", |
| 294 | + "text": [ |
| 295 | + "Tesla | ORG\n", |
| 296 | + "Twitter | ORG\n", |
| 297 | + "$45 billion | MONEY\n" |
| 298 | + ] |
| 299 | + } |
| 300 | + ], |
| 301 | + "source": [ |
| 302 | + "for ent in doc.ents:\n", |
| 303 | + " print(ent.text, \" | \", ent.label_)" |
| 304 | + ] |
| 305 | + } |
| 306 | + ], |
| 307 | + "metadata": { |
| 308 | + "kernelspec": { |
| 309 | + "display_name": "Python 3", |
| 310 | + "language": "python", |
| 311 | + "name": "python3" |
| 312 | + }, |
| 313 | + "language_info": { |
| 314 | + "codemirror_mode": { |
| 315 | + "name": "ipython", |
| 316 | + "version": 3 |
| 317 | + }, |
| 318 | + "file_extension": ".py", |
| 319 | + "mimetype": "text/x-python", |
| 320 | + "name": "python", |
| 321 | + "nbconvert_exporter": "python", |
| 322 | + "pygments_lexer": "ipython3", |
| 323 | + "version": "3.8.5" |
| 324 | + } |
| 325 | + }, |
| 326 | + "nbformat": 4, |
| 327 | + "nbformat_minor": 4 |
| 328 | +} |
0 commit comments